Answer:
Part a: In order to meet the external demand of 100 units of Product 1, 120 units of Product 2 and 150 units of Product 3, the total production of 147.06 units of Product 1, 171.27 units of Product 2 and 184.29 units of Product 3 are to be produced.
Part b: The individual entry of 3rd column (I-M)^-1 signifies the role of the demand of 3rd product for total estimation of product 1, product 2 and product 3 respectively.
Step-by-step explanation:
The matrix form of the equation is given as
![\left[\begin{array}{c}P_1\\P_2\\P_3\end{array}\right] =\left[\begin{array}{ccc}0.02&.0.15&0.10\\0.14&0.05&0.12\\0.14&0.08&0\end{array}\right] \left[\begin{array}{c}P_1\\P_2\\P_3\end{array}\right] +\left[\begin{array}{c}P_1\\P_2\\P_3\end{array}\right] _(external)](https://img.qammunity.org/2021/formulas/business/college/wmihugip5a5j7cictg2e69kk2rqwhzd0po.png)
where
![\left[\begin{array}{c}P_1\\P_2\\P_3\end{array}\right] _(external)=\left[\begin{array}{c}100\\120\\150\end{array}\right]](https://img.qammunity.org/2021/formulas/business/college/a8ymyr7qao6p6jntgprr4zrynadb4y5dql.png)
so the equation now becomes
![\left[\begin{array}{c}P_1\\P_2\\P_3\end{array}\right] =\left[\begin{array}{ccc}0.02&.0.15&0.10\\0.14&0.05&0.12\\0.14&0.08&0\end{array}\right] \left[\begin{array}{c}P_1\\P_2\\P_3\end{array}\right] +\left[\begin{array}{c}100\\120\\150\end{array}\right]](https://img.qammunity.org/2021/formulas/business/college/tx555smx8usyh406cp1y7du8xt3502y24c.png)
From here it is given that
![P=MP+\Delta](https://img.qammunity.org/2021/formulas/business/college/gvuruwndy3uwnutoske8wmkglym1uuklwo.png)
Or
![P-MP=\Delta\\P(I-M)=\Delta\\P=(I-M)^(-1)\Delta](https://img.qammunity.org/2021/formulas/business/college/2c1hi48corpp01cjd9qvcfyr3j2545ztip.png)
Here
![P=\left[\begin{array}{c}P_1\\P_2\\P_3\end{array}\right] \\M=\left[\begin{array}{ccc}0.02&.0.15&0.10\\0.14&0.05&0.12\\0.14&0.08&0\end{array}\right] \\\Delta=\left[\begin{array}{c}100\\120\\150\end{array}\right]](https://img.qammunity.org/2021/formulas/business/college/cze32fb56ixo78xjimy5fxvsxsr3m4oifx.png)
So now I-M is given as
![\\I-M=\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right] -\left[\begin{array}{ccc}0.02&0.15&0.10\\0.14&0.05&0.12\\0.14&0.08&0\end{array}\right] \\ I-M=\left[\begin{array}{ccc}1-0.02&0-0.15&0-0.10\\0-0.14&1-0.05&0-0.12\\0-0.14&0-0.08&1-0\end{array}\right] \\I-M=\left[\begin{array}{ccc}0.98&-0.15&-0.10\\-0.14&0.95&-0.12\\-0.14&-0.08&1\end{array}\right]](https://img.qammunity.org/2021/formulas/business/college/li1xghkv7gaeurmwr5dvnyplr8dz2u292w.png)
Now the inverse is calculated as
![(I-M)^(-1)=(1)/(det(I-M))Adj(I-M)](https://img.qammunity.org/2021/formulas/business/college/qm8699jr8lrzszq837i7b7e40ex0079vsc.png)
So the adjoint of (I-M) is calculated as
![adj(I-M)=adj(\left[\begin{array}{ccc}0.98&-0.15&-0.10\\-0.14&0.95&-0.12\\-0.14&-0.08&1\end{array}\right])\\adj(I-M)=\left[\begin{array}{ccc}0.9404&0.1580 & 0.1130\\0.1568&0.9660& 0.1316\\0.1442 &0.0994 & 0.9100\end{array}\right]\\](https://img.qammunity.org/2021/formulas/business/college/2j0smpyt8pyjhevfvghx7yszjpf0e9rzww.png)
Also the determinant is given as
![|I-M|=\left|\begin{array}{ccc}0.98&-0.15&-0.10\\-0.14&0.95&-0.12\\-0.14&-0.08&1\end{array}\right|\\|I-M|=0.8837](https://img.qammunity.org/2021/formulas/business/college/go064okwbjav7cjuo4pq3u1n6fd30hzhgs.png)
So the inverse is given as
![(I-M)^(-1)=(1)/(det(I-M))Adj(I-M)](https://img.qammunity.org/2021/formulas/business/college/qm8699jr8lrzszq837i7b7e40ex0079vsc.png)
![(I-M)^(-1)=(1)/(0.8837)\left[\begin{array}{ccc}0.9404&0.1580 & 0.1130\\0.1568&0.9660& 0.1316\\0.1442 &0.0994 & 0.9100\end{array}\right]\\\\(I-M)^(-1)=\left[\begin{array}{ccc}1.0642 & 0.1788 & 0.1279\\ 0.1774 &1.0932 & 0.1489\\ 0.1632 & 0.1125 & 1.0298\end{array}\right]\\](https://img.qammunity.org/2021/formulas/business/college/9m0uxhchr95ttt4bjvh4150bij144if9yt.png)
So the total demand of each product to meet the external demand is given as
![P=(I-M)^(-1)\Delta](https://img.qammunity.org/2021/formulas/business/college/usyzb2vzn8j1vif95qo52vjegdr3y2dw1l.png)
![\left[\begin{array}{c}P_1\\P_2\\P_3\end{array}\right]=\left[\begin{array}{ccc}1.0642 & 0.1788 & 0.1279\\ 0.1774 &1.0932 & 0.1489\\ 0.1632 & 0.1125 & 1.0298\end{array}\right]\left[\begin{array}{c}100\\120\\150\end{array}\right]\\\\\left[\begin{array}{c}P_1\\P_2\\P_3\end{array}\right]=\left[\begin{array}{c}147.06\\ 171.27 \\184.29\end{array}\right]\\](https://img.qammunity.org/2021/formulas/business/college/p6tp3ypauvadf0z7z1e5rv5ebr41majjsk.png)
So in order to meet the external demand of 100 units of Product 1, 120 units of Product 2 and 150 units of Product 3, the total production of 147.06 units of Product 1, 171.27 units of Product 2 and 184.29 units of Product 3 are to be produced.
Part b
The individual entry of 3rd column (I-M)^-1 signifies the role of the demand of 3rd product for total estimation of product 1, product 2 and product 3 respectively.