The product of the expression is
![84 x^(11)](https://img.qammunity.org/2021/formulas/mathematics/high-school/g15ix7oo0pe12kcif2oto22vkcc98tzvqf.png)
Step-by-step explanation:
The expression is
![(4 x)(-3 x ^8)\left(-7 x^(2)\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ah8kumgoksn2fvxba109d5plvrcbdfk6ka.png)
Let us simplify the expression by multiplying the first two terms.
Thus, we have,
![[(4 x)(-3 x ^8)]\left(-7 x^(2)\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/somlracsk0m4gj578k7iu45o35ugwcurgn.png)
First, multiplying the coefficients, we get,
![4(-3)=-12](https://img.qammunity.org/2021/formulas/mathematics/high-school/n80k2qdn6pqi8wbonbkaa0t1xyo2uqm873.png)
Since, the base x is common for both the terms, we can add the exponent.
Thus, we get,
![x\left(x^(8)\right)=x^(1+8)=x^(9)](https://img.qammunity.org/2021/formulas/mathematics/high-school/mv91wqcqevey9pktzwwjap8crw4cgg1jvu.png)
Thus, the simplification of the first two terms, we have,
![(-12x^9)(-7x^(2) )](https://img.qammunity.org/2021/formulas/mathematics/high-school/uo71kg2xg76ea6kys2cyeezhzqv7i1hb8d.png)
Similarly, we shall multiply the terms
, we get,
Multiplying the coefficients, we have,
![-12(-7)=84](https://img.qammunity.org/2021/formulas/mathematics/high-school/6feizfn5g0qlffscmlwi7faa4l5mntv0pa.png)
Adding the exponents, we have,
![x^9\left(x^(2)\right)=x^(9+2)=x^(11)](https://img.qammunity.org/2021/formulas/mathematics/high-school/3m2va3gqlihqx3fa1teujpttekw4hnm7nj.png)
Thus, this gives
![84 x^(11)](https://img.qammunity.org/2021/formulas/mathematics/high-school/g15ix7oo0pe12kcif2oto22vkcc98tzvqf.png)
Hence, the product of the expression is
![84 x^(11)](https://img.qammunity.org/2021/formulas/mathematics/high-school/g15ix7oo0pe12kcif2oto22vkcc98tzvqf.png)