21.0k views
4 votes
The concentration, C, in ng/ml, of a drug in the blood as a function of the time, t, in hours since the drug was administered is given by C = 15te−0.2t. The area under the concentration curve is a measure of the overall effect of the drug on the body, called the bioavailability. Find the bioavailability of the drug between t =0 and t =3

1 Answer

4 votes

Answer:


\displaystyle \int\limits^3_0 {15te^(-0.2t)} \, dt = 45.713 \ \text{ng/mL}

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:
\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Integration by Parts:
\displaystyle \int {u} \, dv = uv - \int {v} \, du

  • [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig

Area of a Region Formula:
\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Explanation:

*Note:

It is given that the area under the concentration curve is equal to the bioavailability.

Step 1: Define

Identify


\displaystyle C = 15te^(-0.2t) \\\left[ 0 ,\ 3 \right]

Step 2: Integrate Pt. 1

  1. Substitute in variables [Area of a Region Formula]:
    \displaystyle \int\limits^3_0 {15te^(-0.2t)} \, dt
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int\limits^3_0 {15te^(-0.2t)} \, dt = 15 \int\limits^3_0 {te^(-0.2t)} \, dt

Step 3: Integrate Pt. 2

Identify variables for integration by parts using LIPET.

  1. Set u:
    \displaystyle u = t
  2. [u] Differentiate [Basic Power Rule]:
    \displaystyle du = dt
  3. Set dv:
    \displaystyle dv = e^(-0.2t) \ dt
  4. [dv] Exponential Integration [U-Substitution]:
    \displaystyle v = (-e^(-0.2t))/(0.2)

Step 4: Integrate Pt. 3

  1. [Integral] Integration by Parts:
    \displaystyle \int\limits^3_0 {15te^(-0.2t)} \, dt = 15 \Bigg[ (-te^(-0.2t))/(0.2) \bigg| \limits^3_0 - \int\limits^3_0 {(-e^(-0.2t))/(0.2)} \, dt \Bigg]
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int\limits^3_0 {15te^(-0.2t)} \, dt = 15 \Bigg[ (-te^(-0.2t))/(0.2) \bigg| \limits^3_0 + (1)/(0.2) \int\limits^3_0 {e^(-0.2t)} \, dt \Bigg]

Step 5: Integrate Pt. 4

Identify variables for u-substitution.

  1. Set u:
    \displaystyle u = -0.2t
  2. [u] Differentiation [Basic Power Rule, Multiplied Constant]:
    \displaystyle du = -0.2 \ dt
  3. [Limits] Switch:
    \displaystyle \left \{ {{t = 3 ,\ u = -0.2(3) = -0.6} \atop {t = 0 ,\ u = -0.2(0) = 0}} \right.

Step 6: Integrate Pt. 5

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int\limits^3_0 {15te^(-0.2t)} \, dt = 15 \Bigg[ (-te^(-0.2t))/(0.2) \bigg| \limits^3_0 - (1)/(0.04) \int\limits^3_0 {-0.2e^(-0.2t)} \, dt \Bigg]
  2. [Integral] U-Substitution:
    \displaystyle \int\limits^3_0 {15te^(-0.2t)} \, dt = 15 \Bigg[ (-te^(-0.2t))/(0.2) \bigg| \limits^3_0 - (1)/(0.04) \int\limits^(-0.6)_0 {e^(u)} \, du \Bigg]
  3. [Integral] Exponential Integration:
    \displaystyle \int\limits^3_0 {15te^(-0.2t)} \, dt = 15 \Bigg[ (-te^(-0.2t))/(0.2) \bigg| \limits^3_0 - (1)/(0.04)(e^u) \bigg| \limits^(-0.6)_0 \Bigg]
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
    \displaystyle \int\limits^3_0 {15te^(-0.2t)} \, dt = 15 \Bigg[ -8.23217 - (1)/(0.04)(-0.451188) \Bigg]
  5. Simplify:
    \displaystyle \int\limits^3_0 {15te^(-0.2t)} \, dt = 45.713

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

User Megubyte
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories