Answer:

General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
![\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)](https://img.qammunity.org/2021/formulas/mathematics/college/bz16ipe6p14y3f6abzxt2zy0j41tg530u9.png)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
Integration Rule [Fundamental Theorem of Calculus 1]:

Integration Property [Multiplied Constant]:

U-Substitution
Integration by Parts:

- [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig
Area of a Region Formula:
![\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/8yomppr4m10wil0api6m0lag5b7hnc5c9y.png)
Explanation:
*Note:
It is given that the area under the concentration curve is equal to the bioavailability.
Step 1: Define
Identify
![\displaystyle C = 15te^(-0.2t) \\\left[ 0 ,\ 3 \right]](https://img.qammunity.org/2021/formulas/mathematics/high-school/wqyvtzj0oskphcjj2idr8mfxnbnqgu10qd.png)
Step 2: Integrate Pt. 1
- Substitute in variables [Area of a Region Formula]:

- [Integral] Rewrite [Integration Property - Multiplied Constant]:

Step 3: Integrate Pt. 2
Identify variables for integration by parts using LIPET.
- Set u:

- [u] Differentiate [Basic Power Rule]:

- Set dv:

- [dv] Exponential Integration [U-Substitution]:

Step 4: Integrate Pt. 3
- [Integral] Integration by Parts:
![\displaystyle \int\limits^3_0 {15te^(-0.2t)} \, dt = 15 \Bigg[ (-te^(-0.2t))/(0.2) \bigg| \limits^3_0 - \int\limits^3_0 {(-e^(-0.2t))/(0.2)} \, dt \Bigg]](https://img.qammunity.org/2021/formulas/mathematics/high-school/l8bd0xyva4ud02qecmyztwdm8yuwcd76cl.png)
- [Integral] Rewrite [Integration Property - Multiplied Constant]:
![\displaystyle \int\limits^3_0 {15te^(-0.2t)} \, dt = 15 \Bigg[ (-te^(-0.2t))/(0.2) \bigg| \limits^3_0 + (1)/(0.2) \int\limits^3_0 {e^(-0.2t)} \, dt \Bigg]](https://img.qammunity.org/2021/formulas/mathematics/high-school/xlj2a1dyrte9daeij2jovzveuwtw8ohwuz.png)
Step 5: Integrate Pt. 4
Identify variables for u-substitution.
- Set u:

- [u] Differentiation [Basic Power Rule, Multiplied Constant]:

- [Limits] Switch:

Step 6: Integrate Pt. 5
- [Integral] Rewrite [Integration Property - Multiplied Constant]:
![\displaystyle \int\limits^3_0 {15te^(-0.2t)} \, dt = 15 \Bigg[ (-te^(-0.2t))/(0.2) \bigg| \limits^3_0 - (1)/(0.04) \int\limits^3_0 {-0.2e^(-0.2t)} \, dt \Bigg]](https://img.qammunity.org/2021/formulas/mathematics/high-school/frf4dei6iju8fk8929m18cjp7827p3ydda.png)
- [Integral] U-Substitution:
![\displaystyle \int\limits^3_0 {15te^(-0.2t)} \, dt = 15 \Bigg[ (-te^(-0.2t))/(0.2) \bigg| \limits^3_0 - (1)/(0.04) \int\limits^(-0.6)_0 {e^(u)} \, du \Bigg]](https://img.qammunity.org/2021/formulas/mathematics/high-school/qer1lwdg9dlc0vxowabau0fo7q24ul6v1h.png)
- [Integral] Exponential Integration:
![\displaystyle \int\limits^3_0 {15te^(-0.2t)} \, dt = 15 \Bigg[ (-te^(-0.2t))/(0.2) \bigg| \limits^3_0 - (1)/(0.04)(e^u) \bigg| \limits^(-0.6)_0 \Bigg]](https://img.qammunity.org/2021/formulas/mathematics/high-school/zeafnerkfd4ol3d13yfeofo7tfqz71ekwo.png)
- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
![\displaystyle \int\limits^3_0 {15te^(-0.2t)} \, dt = 15 \Bigg[ -8.23217 - (1)/(0.04)(-0.451188) \Bigg]](https://img.qammunity.org/2021/formulas/mathematics/high-school/u6hi393sjda3fufj6wpl9664yb36765mcp.png)
- Simplify:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration