Answer:
P(0) = 7,917
Explanation:
The population of the community is given by the following formula:
![P(t) = P(0)(1+r)^(t)](https://img.qammunity.org/2021/formulas/mathematics/college/av6ds12l4a5zxy9dgysvoxqbkn4ruq3u3x.png)
In which P(0) is the initial population and r is the growth rate.
The initial population P0 has doubled in 5 years.
This means that
![P(5) = 2P(0)](https://img.qammunity.org/2021/formulas/mathematics/college/sdkuudnx90cjt0w2u2z6853a9mynxezsse.png)
Which lets us find r.
![P(t) = P(0)(1+r)^(t)](https://img.qammunity.org/2021/formulas/mathematics/college/av6ds12l4a5zxy9dgysvoxqbkn4ruq3u3x.png)
![2P(0) = P(0)(1+r)^(5)](https://img.qammunity.org/2021/formulas/mathematics/college/xdqkzlr0g7zxa7duz835wnm3q6s9l8e6ng.png)
![(1+r)^(5) = 2](https://img.qammunity.org/2021/formulas/mathematics/college/f0tbtawuejoy1scls2ydzc9o2aa7jrmpj0.png)
Applying the 5th root to both sides
![1+r = 1.1487](https://img.qammunity.org/2021/formulas/mathematics/college/7m9xdqn1h0l6mrb4e52pt73z5k9ugtzvyf.png)
![r = 0.1487](https://img.qammunity.org/2021/formulas/mathematics/college/7y87px8er9p3jn9rtcwbnpgesuu75yu66i.png)
So
![P(t) = P(0)(1.1487)^(t)](https://img.qammunity.org/2021/formulas/mathematics/college/anizol16ngvkbpntfyfx7mb4mxwzeptz9w.png)
Suppose it is known that the population is 12,000 after 3 years.
With this, we find P(0)
![P(t) = P(0)(1.1487)^(t)](https://img.qammunity.org/2021/formulas/mathematics/college/anizol16ngvkbpntfyfx7mb4mxwzeptz9w.png)
![12000 = P(0)(1.1487)^(3)](https://img.qammunity.org/2021/formulas/mathematics/college/dnc9t323ge8v6bpcuodkigjhgyg85m97ar.png)
![1.5157P(0) = 12000](https://img.qammunity.org/2021/formulas/mathematics/college/6rtu9cp7v8jrpvd8xj11sqln6gekzdc0iz.png)
![P(0) = (12000)/(1.5157)](https://img.qammunity.org/2021/formulas/mathematics/college/6scesdlps8znfde8pdigq63o88jdd8n4me.png)
![P(0) = 7917](https://img.qammunity.org/2021/formulas/mathematics/college/b22m1k5lckrxry5861xl9yb0yclgn91xnn.png)