Answer:
15.8640053791 s
392.780107582 m
29.5184032275 m/s
Step-by-step explanation:
0 denotes initial
x denotes displacement
c denotes car
t denotes truck
r denotes rear
![x_0_(cr)=-49.5\ m](https://img.qammunity.org/2021/formulas/physics/college/2m18e9cyqdbtbzkek4uowcxwk5gyn7spwz.png)
![a_c=0.6\ m/s^2](https://img.qammunity.org/2021/formulas/physics/college/mxszfvua29tjgo99gnzksiobdwzy7y4bz5.png)
![x_0_(t)=0](https://img.qammunity.org/2021/formulas/physics/college/j4k04l2ccoh4jvthlrll4z0f54apydyt7s.png)
![v_0_(c)=v_0_(t)](https://img.qammunity.org/2021/formulas/physics/college/b3ijekibgp4x9ebw0ox0eyky1fwvqxw6gx.png)
For the car
![x_c=x_0+v_0_(c)t+(1)/(2)at^2](https://img.qammunity.org/2021/formulas/physics/college/nr6s7ousjibmknv2px1e25wnbpyfq5v7nm.png)
The displacement of the truck will be
![x_t=v_tt](https://img.qammunity.org/2021/formulas/physics/college/7ehassjq7afnnllc82kk59lsl7edmu4yb7.png)
From the above two equations we get
![x_c-x_t=x_0+v_0_(c)+(1)/(2)at-v_(t)t=26\\\Rightarrow 26=x_0+(1)/(2)at^2\\\Rightarrow 26+49.5=(1)/(2)0.6t^2\\\Rightarrow t=\sqrt{(2(26+49.5))/(0.6)}\\\Rightarrow t=15.8640053791\ s](https://img.qammunity.org/2021/formulas/physics/college/t31drt9hv9xz6exnfki78422iiup406dw6.png)
The time taken is 15.8640053791 s
![x-x_0=v_(0)_(c)t+(1)/(2)at^2\\\Rightarrow x-x_0=20* 15.8640053791+(1)/(2)0.6* 15.8640053791^2\\\Rightarrow x-x_0=392.780107582\ m](https://img.qammunity.org/2021/formulas/physics/college/xdw2bbhn8kim4i8siojr4rbwv80lbqm5mv.png)
The distance the car travels is 392.780107582 m
![v=v_0+at\\\Rightarrow v=20+0.6* 15.8640053791\\\Rightarrow v=29.5184032275\ m/s](https://img.qammunity.org/2021/formulas/physics/college/lsorsy6fb3eao6a64vx3wr7hri0d6up6mi.png)
The velocity of the car is 29.5184032275 m/s