Answer:
1. a = 1
2. See explanation below.
Explanation:
First Question
Given:
![\displaystyle \large{\log_b a = 0}](https://img.qammunity.org/2023/formulas/mathematics/college/p5wkbt5gwfdyc7xtmck3ife7cr2r8xkhrn.png)
Convert to exponential:
![\displaystyle \large{\log_b a = c \to b^c = a}](https://img.qammunity.org/2023/formulas/mathematics/college/frj9gin4wushsdhb1umoa7t6ow9g6oo4ol.png)
Thus
![\displaystyle \large{\log_b a = 0 \to b^0 = a}](https://img.qammunity.org/2023/formulas/mathematics/college/ces8hqafqq18z9cwy4dfzmj9l72mth3ihk.png)
Evaluate:
![\displaystyle \large{b^0 = a}](https://img.qammunity.org/2023/formulas/mathematics/college/ptpfoomo35twsm1me29q0c76nmqy30qwns.png)
We know that for every values to power of 0 will always result in 1, excluding 0 to power of 0 itself.
Solution:
![\displaystyle \large{a = 1}](https://img.qammunity.org/2023/formulas/mathematics/college/erpcebshw0mq0zyapj3sfspo7n91r0upbq.png)
__________________________________________________________
Second Question
Given:
and
![\displaystyle \large{\log_1 3}](https://img.qammunity.org/2023/formulas/mathematics/college/lx4hfhwu363eh6t3oum1odo5tc1b6ocj58.png)
Let’s convert to an equation:
and
![\displaystyle \large{\log_1 3 = y}](https://img.qammunity.org/2023/formulas/mathematics/college/uavt7rvjgb5xmk58c2gya5r1a7d6oxjisn.png)
The variables represent unknown values of logarithm.
Convert to exponential:
and
![\displaystyle \large{1^y = 3}](https://img.qammunity.org/2023/formulas/mathematics/college/pdtu26lgrhr6katw36tivfooemzyr535qt.png)
Notice that none of x-values and y-values will satisfy the equations. No matter what real numbers you put in, these equations will always be false.
Hence, no solutions for x and y.