7.9k views
4 votes
Consider the first order separable equation y′=20x^4y(1+3x^5)^1/3. An explicit general solution can be written in the form y=Cf(x) for some function f(x) with C an arbitrary constant. Here f(x)=_______

Next find the explicit solution of the initial value problem y(0)=3
y=_________ .

User Malachy
by
4.6k points

1 Answer

2 votes

Answer:


f(x)=Ce^{(1+3x^5)^{(4)/(3)}}

The explicit solution of the initial value problem=y=
1.1e^{(1+3x^5)^{(4)/(3)}}

Explanation:

We are given that first order separable equation


(dy)/(dx)=20x^4y(1+3x^5)^{(1)/(3)}


\int (dy)/(y)=20\int x^4(1+3x^5)^{(1)/(3)}dx

Suppose
1+3x^5=t

Differentiate w.r.t x


15x^4dx=dt


x^4dx=(1)/(15)dt

Substitute the values


ln y=(20)/(15)\int t^{(1)/(3)}dt


ln y=(4)/(3)* (3)/(4) t^{(4)/(3)}+C

By using the formula
\int x^n dx=(x^(n+1))/(n+1)+C


\int (dx)/(x)=ln x+C


ln y=(1+3x^5)^{(4)/(3)}+C


y=e^{(1+3x^5)^{(4)/(3)}+C}

By using identity :
ln x=y\implies x=e^y


y=e^{(1+3x^5)^{(4)/(3)}}\cdot e^C=Ce^{(1+3x^5)^{(4)/(3)}}

By using identity :
x^a\cdot x^y=x^(a+y)

Where
e^C=C


y=Ce^{(1+3x^5)^{(4)/(3)}}

By compare with y=Cf(x)

We get
f(x)=Ce^{(1+3x^5)^{(4)/(3)}}

We are given that y(0)=3

Substitute the value


3=Ce


C=(3)/(e)=1.1

Substitute the value


y=1.1e^{(1+3x^5)^{(4)/(3)}}

The explicit solution of the initial value problem=y=
1.1e^{(1+3x^5)^{(4)/(3)}}

User NavaRajan
by
5.2k points