Answer:
a) Our random variable X="number of tests taken until the individual passes" follows a geomteric distribution with probability of success p=0.25
For this case the probability mass function would be given by:
![P(X= k) = (1-p)^(k-1) p , k = 1,2,3,...](https://img.qammunity.org/2021/formulas/mathematics/college/tnzhmleuprtfryqglm9pm9q4y275i0mfrq.png)
b)
![P(X \leq 3) = P(X=1) +P(X=2) +P(X=3)](https://img.qammunity.org/2021/formulas/mathematics/college/xd4mg8n0cw3wjwq744n7c457l8ycodh03t.png)
![P(X= 1) = (1-0.25)^(1-1) *0.25 = 0.25](https://img.qammunity.org/2021/formulas/mathematics/college/vn7r74xp0a3pgagecwepatwflgbfzjpust.png)
![P(X= 2) = (1-0.25)^(2-1) *0.25 = 0.1875](https://img.qammunity.org/2021/formulas/mathematics/college/vfum9hep8dc8qufdmvc4jb7tixzcp0zg0s.png)
![P(X= 3) = (1-0.25)^(3-1) *0.25 = 0.1406](https://img.qammunity.org/2021/formulas/mathematics/college/h7y0iiklprsg2v2ah4zwfe3dv1lu479458.png)
And adding the values we got:
![P(X \leq 3) =0.25+0.1875+0.1406=0.578](https://img.qammunity.org/2021/formulas/mathematics/college/yhiuo8ia78tu2921wh3zpfoef99w58w34w.png)
c)
![P(X \geq 5) = 1-P(X<5) = 1- P(X\leq 4)= 1-[P(X=1) +P(X=2) +P(X=3) +P(X=4)]](https://img.qammunity.org/2021/formulas/mathematics/college/blu6hmzxv3dmkywun3uuatszypkl08brrd.png)
And we can find the individual probabilities:
![P(X= 1) = (1-0.25)^(1-1) *0.25 = 0.25](https://img.qammunity.org/2021/formulas/mathematics/college/vn7r74xp0a3pgagecwepatwflgbfzjpust.png)
![P(X= 2) = (1-0.25)^(2-1) *0.25 = 0.1875](https://img.qammunity.org/2021/formulas/mathematics/college/vfum9hep8dc8qufdmvc4jb7tixzcp0zg0s.png)
![P(X= 3) = (1-0.25)^(3-1) *0.25 = 0.1406](https://img.qammunity.org/2021/formulas/mathematics/college/h7y0iiklprsg2v2ah4zwfe3dv1lu479458.png)
![P(X= 4) = (1-0.25)^(4-1) *0.25 = 0.1055](https://img.qammunity.org/2021/formulas/mathematics/college/zbh5p30put9yp2peqinru0azn4ipy21ucp.png)
![P(X \geq 5) = 1-[0.25+0.1875+0.1406+0.1055]= 0.316](https://img.qammunity.org/2021/formulas/mathematics/college/jck0ou748zm1l5linpci9jks2vqtnxxi24.png)
Explanation:
Previous concepts
The geometric distribution represents "the number of failures before you get a success in a series of Bernoulli trials. This discrete probability distribution is represented by the probability density function:"
Let X the random variable that measures the number of trials until the first success, we know that X follows this distribution:
Part a
Our random variable X="number of tests taken until the individual passes" follows a geomteric distribution with probability of success p=0.25
For this case the probability mass function would be given by:
![P(X= k) = (1-p)^(k-1) p , k = 1,2,3,...](https://img.qammunity.org/2021/formulas/mathematics/college/tnzhmleuprtfryqglm9pm9q4y275i0mfrq.png)
Part b
We want this probability:
![P(X \leq 3) = P(X=1) +P(X=2) +P(X=3)](https://img.qammunity.org/2021/formulas/mathematics/college/xd4mg8n0cw3wjwq744n7c457l8ycodh03t.png)
We find the individual probabilities like this:
![P(X= 1) = (1-0.25)^(1-1) *0.25 = 0.25](https://img.qammunity.org/2021/formulas/mathematics/college/vn7r74xp0a3pgagecwepatwflgbfzjpust.png)
![P(X= 2) = (1-0.25)^(2-1) *0.25 = 0.1875](https://img.qammunity.org/2021/formulas/mathematics/college/vfum9hep8dc8qufdmvc4jb7tixzcp0zg0s.png)
![P(X= 3) = (1-0.25)^(3-1) *0.25 = 0.1406](https://img.qammunity.org/2021/formulas/mathematics/college/h7y0iiklprsg2v2ah4zwfe3dv1lu479458.png)
And adding the values we got:
![P(X \leq 3) =0.25+0.1875+0.1406=0.578](https://img.qammunity.org/2021/formulas/mathematics/college/yhiuo8ia78tu2921wh3zpfoef99w58w34w.png)
Part c
For this case we want this probability:
![P(X \geq 5)](https://img.qammunity.org/2021/formulas/mathematics/college/pv6dtknqq5m8v4o42cexbgaebp44grhpyq.png)
And we can use the complement rule like this:
![P(X \geq 5) = 1-P(X<5) = 1- P(X\leq 4)= 1-[P(X=1) +P(X=2) +P(X=3) +P(X=4)]](https://img.qammunity.org/2021/formulas/mathematics/college/blu6hmzxv3dmkywun3uuatszypkl08brrd.png)
And we can find the individual probabilities:
![P(X= 1) = (1-0.25)^(1-1) *0.25 = 0.25](https://img.qammunity.org/2021/formulas/mathematics/college/vn7r74xp0a3pgagecwepatwflgbfzjpust.png)
![P(X= 2) = (1-0.25)^(2-1) *0.25 = 0.1875](https://img.qammunity.org/2021/formulas/mathematics/college/vfum9hep8dc8qufdmvc4jb7tixzcp0zg0s.png)
![P(X= 3) = (1-0.25)^(3-1) *0.25 = 0.1406](https://img.qammunity.org/2021/formulas/mathematics/college/h7y0iiklprsg2v2ah4zwfe3dv1lu479458.png)
![P(X= 4) = (1-0.25)^(4-1) *0.25 = 0.1055](https://img.qammunity.org/2021/formulas/mathematics/college/zbh5p30put9yp2peqinru0azn4ipy21ucp.png)
![P(X \geq 5) = 1-[0.25+0.1875+0.1406+0.1055]= 0.316](https://img.qammunity.org/2021/formulas/mathematics/college/jck0ou748zm1l5linpci9jks2vqtnxxi24.png)