The value of x is
.
Solution:
Given expression is
.
Switch both sides.
![8-3 \sqrt[5]{x^(3)}=-7](https://img.qammunity.org/2021/formulas/mathematics/middle-school/qnrb9ax8z3sgxxzos43pevikmj5fn0uorc.png)
Subtract 8 from both side of the equation.
![8-3 \sqrt[5]{x^(3)}-8=-7-8](https://img.qammunity.org/2021/formulas/mathematics/middle-school/877mef7dg6fvye10lazl0azazvm4yqje3m.png)
![-3 \sqrt[5]{x^(3)}=-15](https://img.qammunity.org/2021/formulas/mathematics/middle-school/6pvby8tj74hj13v6anvyt8oaquu5328o8t.png)
Divide by –3 on both side of the equation.
![$\frac{-3 \sqrt[5]{x^(3)}}{-3} =(-15)/(-3)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/f5ddmtxvqhdqvfb8yuktqtifv1zy5aqgno.png)
![\sqrt[5]{x^(3)}=-5](https://img.qammunity.org/2021/formulas/mathematics/middle-school/qmrig9rpdz6agoezvotydj0qpfw8lfbjks.png)
To cancel the cube root, raise the power 5 on both sides.
![(\sqrt[5]{x^(3)})^5=(-5)^5](https://img.qammunity.org/2021/formulas/mathematics/middle-school/3lgydtz5sqjphwjdlnrjyo07966tmuioog.png)

To find the value of x, take square root on both sides.
![\sqrt[3]{x^3}=\sqrt[3]{25}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/zuehmpcj6peli7ixmus73by0cqk3ut6rur.png)
![x=5\sqrt[3]{25}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/otyq12uz0bgsgyqleisd5spt3atyt9zfj6.png)
Hence the value of x is
.