First find a parameterization for the curve of intersection.
Given the equation of a cylinder, a natural choice for a parameterization would be one utilizing cylindrical coordinates. Here,
![16x^2+y^2=16\implies x^2+\left(\frac y4\right)^2=1](https://img.qammunity.org/2021/formulas/mathematics/college/x1g36y7x04rshf73o3w08g384osfz1sqyi.png)
which suggests we could use
![\begin{cases}x(t)=\cos t\\y(t)=4\sin t\\z(t)\end{cases}](https://img.qammunity.org/2021/formulas/mathematics/college/1fwbt7rpqhf71ivbvn8qy12w7k5c14bepp.png)
with
, and we get
from the equation of the plane,
![x+y+z=12\implies z(t)=12-x(t)-y(t)=12-\cos t-4\sin t](https://img.qammunity.org/2021/formulas/mathematics/college/gfj7o0se26fx4lgmd0gp3f2a04alw2hhif.png)
Now use the arc length formula:
![\displaystyle\ell=\int_0^(2\pi)\sqrt{\left((\mathrm dx)/(\mathrm dt)\right)^2+\left((\mathrm dy)/(\mathrm dt)\right)^2+\left((\mathrm dz)/(\mathrm dt)\right)^2}\,\mathrm dt](https://img.qammunity.org/2021/formulas/mathematics/college/71qow7stm0dasb6810cd5kvn0xydtsbrsc.png)
![\displaystyle\ell=\int_0^(2\pi)√(\sin^2t+16\cos^2t+(\sin t-4\cos t)^2)\,\mathrm dt](https://img.qammunity.org/2021/formulas/mathematics/college/d9riu48wwhi4rxe378jocl04ewu6xr3hu2.png)
![\displaystyle\ell=\sqrt2\int_0^(2\pi)√(\sin^2t-4\cos t\sin t+16\cos^2t)\,\mathrm dt\approx\boxed{24.0878}](https://img.qammunity.org/2021/formulas/mathematics/college/ek40a88j2stazx7zvmujttvo0yz8lbmjik.png)