171k views
4 votes
Find, correct to four decimal places, the length of the curve of intersection of the cylinder 16x2 + y2 = 16 and the plane x + y + z = 12.

1 Answer

4 votes

First find a parameterization for the curve of intersection.

Given the equation of a cylinder, a natural choice for a parameterization would be one utilizing cylindrical coordinates. Here,


16x^2+y^2=16\implies x^2+\left(\frac y4\right)^2=1

which suggests we could use


\begin{cases}x(t)=\cos t\\y(t)=4\sin t\\z(t)\end{cases}

with
0\le t\le2\pi, and we get
z(t) from the equation of the plane,


x+y+z=12\implies z(t)=12-x(t)-y(t)=12-\cos t-4\sin t

Now use the arc length formula:


\displaystyle\ell=\int_0^(2\pi)\sqrt{\left((\mathrm dx)/(\mathrm dt)\right)^2+\left((\mathrm dy)/(\mathrm dt)\right)^2+\left((\mathrm dz)/(\mathrm dt)\right)^2}\,\mathrm dt


\displaystyle\ell=\int_0^(2\pi)√(\sin^2t+16\cos^2t+(\sin t-4\cos t)^2)\,\mathrm dt


\displaystyle\ell=\sqrt2\int_0^(2\pi)√(\sin^2t-4\cos t\sin t+16\cos^2t)\,\mathrm dt\approx\boxed{24.0878}

User Mkoala
by
4.7k points