24.7k views
5 votes
The distance between the two points is (2,-3)and (k,9) is 13 units find k


User James Ford
by
7.2k points

1 Answer

2 votes

Explanation:


\sqrt{(k - 2)^(2) + {(9 + 3)}^(2) } = 13 \\ \\ \therefore \: \sqrt{k^(2) - 2 * 2k + 2^(2) + {(12)}^(2) } = 13 \\ \\ \therefore \: \sqrt{k^(2) - 4k + 4 + 144 } = 13\\ \\ \therefore \: \sqrt{k^(2) - 4k + 148 } = 13 \: \\ \: \: \: \: \: \: squaring \: both \: sides \\ \\ k^(2) - 4k + 148 = 169 \\ \\ \therefore \: k^(2) - 4k + 148 - 169 = 0\\ \\ \therefore \: k^(2) - 4k - 21 = 0\\ \\ \therefore \: k^(2) - 7k + 3k - 21 = 0\\ \\ \therefore \: k(k - 7) + 3(k - 7) = 0 \\ \\ \therefore \: (k - 7) (k+ 3) = 0 \\ \\ \therefore \: (k - 7) = 0 \: or \: (k+ 3) = 0 \\ \\ \therefore \: k = 7 \: or \: k = - 3 \\ \\ \huge \purple{ \boxed{\therefore \:k = \{ - 3, \: \: 7 \}}}

User Adrian Klaver
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories