Answer:
a)
X | 1 3 5 7
f(X) | 0.4 0.2 0.2 0.2
b)
![P(4 <X \leq 7)= P(X\leq 7) -P(X<4) = P(X\leq 7) -P(X \leq 3) = (0.4+0.2+0.2+0.2) -(0.4+0.2)= 0.4](https://img.qammunity.org/2021/formulas/mathematics/college/95vl45mntyzmj3pp1hyiukdxs938y2ydh6.png)
Explanation:
For this case we have defined the cumulative distribution function like this:
![F(X) = 0, x<1](https://img.qammunity.org/2021/formulas/mathematics/college/odu8pxhh1tpwb3zuwbdsuc79a07axhn7sp.png)
![F(X) = 0.4, 1 \leq x <3](https://img.qammunity.org/2021/formulas/mathematics/college/6c0zdwmvbkjbjksll3fi9npwpp7ov92cu9.png)
![F(X) = 0.6, 3 \leq x <5](https://img.qammunity.org/2021/formulas/mathematics/college/domfxyzdwl02dq79isdv4jqndcsjoqzg89.png)
![F(X) = 0.8, 5 \leq x <7](https://img.qammunity.org/2021/formulas/mathematics/college/d5ycz6lz0vsp39kux14s6xnodo8ytr2bqr.png)
![F(X) = 1, x \geq 7](https://img.qammunity.org/2021/formulas/mathematics/college/hfcbacz1j7d26q929ejzru6ehrtt7yqv8u.png)
And we know that the general definition for the distribution function is given by:
![F(x) = P(X \leq x) = \sum_(i\leq k) f(i)](https://img.qammunity.org/2021/formulas/mathematics/college/qqajfmdfdjvzklra8n1t1trhma2kcsi8ls.png)
Where f represent the density function.
Part a
For this case we need to find the density function, so we can find the values for the density for each value of X = 1,2,3,4,5,6,7,... since X is a discrete random variable.
![f(1) = P(X=1) = P(X \leq 1) - P(X=0) = F(1) -F(0) = 0.4-0=0.4](https://img.qammunity.org/2021/formulas/mathematics/college/gaz7ddnqfg47uf7cdhe8j47y5yimqg1e06.png)
![f(2) = P(X=2) = P(X \leq 2) - P(X=0)- P(X=1) = F(2) -F(1) = 0.4-0.4=0](https://img.qammunity.org/2021/formulas/mathematics/college/id1lvlkd2ze1510o48n0gjzc571is1one8.png)
![f(3) = P(X=3) = P(X \leq 3) - P(X=0)- P(X=1) -P(X=2) = F(3) -F(2) = 0.6-0.4=0.2](https://img.qammunity.org/2021/formulas/mathematics/college/2bz48ehz0ci3r4gobats0b340igkb5cvmd.png)
![f(4) = P(X=4) = P(X \leq 4) - P(X=0)- P(X=1) -P(X=2)-P(X=3) = F(4) -F(3) = 0.6-0.6=0](https://img.qammunity.org/2021/formulas/mathematics/college/3a9lhx1vfhi09q12pgpv4q0r8ievmx30k7.png)
![f(5) = P(X=5) = P(X \leq 5) - P(X=0)- P(X=1) -P(X=2)-P(X=3)-P(X=4) = F(5) -F(4) = 0.8-0.6=0.2](https://img.qammunity.org/2021/formulas/mathematics/college/nd5c48oqqokrk5sd3dz0nm1tn3v585wtlk.png)
![f(6) = P(X=6) = P(X \leq 6) - P(X=0)- P(X=1) -P(X=2)-P(X=3)-P(X=4)-P(X=5) = F(6) -F(5) = 0.8-0.8=0](https://img.qammunity.org/2021/formulas/mathematics/college/cit2tr9o7f8pza0kfluofzeq0i3pv08d5h.png)
![f(7) = P(X=7) = P(X \leq 7) - P(X=0)- P(X=1) -P(X=2)-P(X=3)-P(X=4)-P(X=5)-P(X=6) = F(7) -F(6) = 1-0.8=0.2](https://img.qammunity.org/2021/formulas/mathematics/college/8025di6ncoc29n5e5lu2ktce5fdkpea10w.png)
And for any value higher than 7 we have that:
![x_i \in [8,9,10,...]](https://img.qammunity.org/2021/formulas/mathematics/college/ar5c2mug7g26n5k90gn78d2ckugnpqp38a.png)
![f(x_i) = F(X_i) -F(X_i -1) = 1-1=0](https://img.qammunity.org/2021/formulas/mathematics/college/y8vtv91eq1kz3jecpia9x7t8uh7z634o3y.png)
So then we have our density function defined like this:
X | 1 3 5 7
f(X) | 0.4 0.2 0.2 0.2
Part b
For this case we want to find this probability
![P(4 <X \leq 7)](https://img.qammunity.org/2021/formulas/mathematics/college/4xvqhqkkfxenp8fgk569oqcpfuyc1j4gox.png)
And since the random variable is discrete we can write this like that:
![P(4 <X \leq 7)= P(X\leq 7) -P(X<4) = P(X\leq 7) -P(X \leq 3) = (0.4+0.2+0.2+0.2) -(0.4+0.2)= 0.4](https://img.qammunity.org/2021/formulas/mathematics/college/95vl45mntyzmj3pp1hyiukdxs938y2ydh6.png)