Answer:
![-15.4^00C](https://img.qammunity.org/2021/formulas/chemistry/college/7u5tk8sbzc8omdguuylkqbaj3rkddg459c.png)
Step-by-step explanation:
![T^0_f-T_f=i* k_f* (w_2* 1000)/(M_2* w_1)](https://img.qammunity.org/2021/formulas/chemistry/college/n90ozzx2krloj32mrdnpf53myolr6p25iu.png)
where,
= boiling point of solution = ?
= boiling point of solvent (X) =
![-10.1^oC](https://img.qammunity.org/2021/formulas/chemistry/college/8xnrvhj9hr9126x9if3w38gkh75eyzp8i5.png)
= freezing point constant =
![5.32^oC/kgmol](https://img.qammunity.org/2021/formulas/chemistry/college/w0rz465bfrbhgunodd33xjps9ja2r8muk3.png)
m = molality
i = Van't Hoff factor = 1 (for non-electrolyte like urea)
= mass of solute (urea) = 29.82 g
= mass of solvent (X) = 500.0 g
= molar mass of solute (urea) = 60 g/mol
Now put all the given values in the above formula, we get:
![(-10.1-(T_f))^oC=1* (5.32^oC/m)* ((29.82g)* 1000)/(60* (500.0g))](https://img.qammunity.org/2021/formulas/chemistry/college/xjn59gn2ceu7xmed9glps5zv5misi9p9ho.png)
![T_f=-15.4^0C](https://img.qammunity.org/2021/formulas/chemistry/college/4al68u5kh83c3w1cc1qhfldga9pu2h1sr1.png)
Therefore, the freezing point of solution is
![-15.4^0C](https://img.qammunity.org/2021/formulas/chemistry/college/5egq49jrc0vm6sjq0ytwd8zu82qeb6niud.png)