52.2k views
1 vote
Sin^5xcos^2x=(cos^2x-2cos^4x+cos^6x)sinx

Please show steps on how to solve this I'm so confused!!! Thanks!!!

User Ngreen
by
7.3k points

1 Answer

4 votes


sin^5xcos^2x = (cos^2x-2cos^4x+cos^6x)sinx\ is\ proved

Solution:

Given that we have to prove:


sin^5xcos^2x = (cos^2x-2cos^4x+cos^6x)sinx

Let us first take the left hand side of equation


sin^5xcos^2x\\\\Split\ sin^5x\ as\ (sin^4x)(sinx)


(sin^4x)(sinx)(cos^2x)\\\\Which\ is\\\\(sinx)(sin^4x)(cos^2x) ------ eqn 1

Now take the right side of equation


(cos^2x-2cos^4x+cos^6x)sinx\\\\Take\ cos^2x\ as\ common\ term\ out\\\\(1-2cos^2x + cos^4x)cos^2x\ sinx


By\ algebraic\ identity,\\\\(a-b)^2 = a^2-2ab + b^2


Therefore,\\\\(1-cos^2x)^2cos^2x\ sinx\\\\We\ know\ that\\\\1-cos^2x = sin^2x\\\\Therefore\\\\sin^4xcos^2x sinx ----- eqn 2

Eqn 1 = eqn 2

Therefore, L.H.S = R.H.S


sin^5xcos^2x = (cos^2x-2cos^4x+cos^6x)sinx

Thus proved

User Tom Boutell
by
7.7k points