166k views
4 votes
Find the arc length of the curve below on the given interval. y equals one third (x squared plus 2 )Superscript 3 divided by 2y= 1 3x2+23/2 on ​[00​,66​]

1 Answer

5 votes

Answer


\int_(0)^(6)√(1+12x^4+8x^2)dx

Step-by-step explanation:

We are given that


y=(1)/(3)(3x^2+2)^{(3)/(2)}

Interval=[0,6]

a=0 and b=6

Differentiate w.r. t x


(dy)/(dx)=(1)/(3)(3x^2+2)^{(1)/(2)}* 6x=2x(3x^2+2)^{(1)/(2)}

By using the formula ;
(dx^n)/(dx)=nx^(n-1)

We know that arc length of curve


s=\int_(a)^(b)\sqrt{1+((dy)/(dx))^2}dx

Substitute the values


s=\int_(0)^(6)\sqrt{1+(2x(3x^2+2)^{(1)/(2)})^2}dx


s=\int_(0)^(6)√(1+4x^2(3x^2+2))dx


s=\int_(0)^(6)√(1+12x^4+8x^2)dx

Length of curve,=
s=\int_(0)^(6)√(1+12x^4+8x^2)dx

User Landings
by
3.5k points