Answer:
(a) Cartesian coordinate (2.8191m, 1.0260m) and (-2.6810m, 2.2498m)
(b) distance = 5.6346m
Step-by-step explanation:
Given a polar coordinate (r, θ);
Its Cartesian coordinate is (x, y) where;
x = r cos θ
y = r sin θ
Now, given the polar coordinate (3.00, 20.0⁰)
Its Cartesian coordinate is (x, y) where
x = 3.00 cos 20.0° = 3.00 x 0.9397 = 2.8191m
y = 3.00 sin 20.0° = 3.00 x 0.3420 = 1.0260m
Therefore,
Polar coordinate (3.00m, 20.0°) = Cartesian coordinate (2.8191m, 1.0260m)
Also,
Now, given the polar coordinate (3.50, 140.0⁰)
Its Cartesian coordinate is (x, y) where
x = 3.50 cos 140.0° = 3.50 x -0.7660 = -2.6810m
y = 3.40 sin 140.0° = 3.50 x 0.6428 = 2.2498m
Therefore,
Polar coordinate (3.50m, 140.0°) = Cartesian coordinate (-2.6810m, 2.2498m)
(a) Polar coordinates (3.00m, 20.0°) and (3.50m, 140.0°) = Cartesian coordinate (2.8191m, 1.0260m) and (-2.6810m, 2.2498m)
(b) To calculate the distance between them, it is easier to use the values from the Cartesian representation as follows;
distance =
![\sqrt{(x_(2) - x_(1))^(2) + (y_(2) - y_(1))^(2) }](https://img.qammunity.org/2021/formulas/physics/college/6vgl7vky5kbs042xykeclcznm606f0fh11.png)
where;
(
,
) = (2.8191m, 1.0260m) and
(
,
) = (-2.6810m, 2.2498m)
=> distance =
![\sqrt{(-2.6810 - 2.8191)^(2) + (2.2498 - 1.0260)^(2) }](https://img.qammunity.org/2021/formulas/physics/college/hcrn192b85k8wqaioawxahcj7pis8053qp.png)
=> distance =
![\sqrt{(-5.5001)^(2) + (1.2238)^(2) }](https://img.qammunity.org/2021/formulas/physics/college/xr3j1ijsiucf4knhb1h639iph7ymiqra4k.png)
=> distance =
![√(30.2511+1.4977)](https://img.qammunity.org/2021/formulas/physics/college/3fwe2uqb9974p4eluapqubaoohya04ur1f.png)
=> distance =
![√(31.7488)](https://img.qammunity.org/2021/formulas/physics/college/s2dogo2665f8xc6tbgmn52e4xwbslh1fdo.png)
=> distance = 5.6346m