162k views
4 votes
Given: ​​ ​​△ABC, FC¯¯¯¯¯ ∥BA¯¯¯¯¯, and A F¯¯¯¯¯ bisects ∠BAC


Prove: ABBD=ACCD

Given: ​​ ​​△ABC, FC¯¯¯¯¯ ∥BA¯¯¯¯¯, and A F¯¯¯¯¯ bisects ∠BAC Prove: ABBD=ACCD-example-1
User Ravit D
by
5.0k points

2 Answers

3 votes

Answer:

i just did the test so for future ppl

Explanation:

Given: ​​ ​​△ABC, FC¯¯¯¯¯ ∥BA¯¯¯¯¯, and A F¯¯¯¯¯ bisects ∠BAC Prove: ABBD=ACCD-example-1
User Slayer
by
5.1k points
7 votes

Answer:

See proof

Explanation:

Statement Reason

1.
\triangle ABC, \overline{FC}\parallel \overline {BA} and
\overline{FA} bisects
\angle BAC - Given

2.
\angle BAD\cong \angle CAD - Definition of angle bisector

3.
\angle BAD\cong \angle CFD - Alternate interior angles theorem

4.
\angle CFD \cong \angle CAD - Substitution property

5.
\bf{\angle ADB\cong \angle CDF} - Vertical angles are congruent

6.
\triangle ADB\sim \triangle FDC - AA Similarity postulate

7.
(AB)/(BD)=(FC)/(CD) - Definition of similar triangles

8.
AC=FC - Converse of base angles theorem

9.
(AB)/(BD)=(AC)/(CD) - Substitution property

User Pushpendra Yadav
by
4.9k points