166k views
15 votes
Vbb. Pls help 50 points

Vbb. Pls help 50 points-example-1

1 Answer

3 votes

Answer:

6468 mm²

Explanation:

Given:

  • 21 mm = length of the shortest of the small rectangle
  • Let y = length of the longest of the small rectangle

Therefore, the area of the small rectangle is:

= width × length

= 21 × y

= 21y mm²

From inspection of the larger rectangle

  • longest side length = 4 × 21 = 84 mm
  • shortest side length = (2y + 21) mm

Therefore, the area of the larger rectangle is:

= width × length

= 84(2y + 21)

= 168y + 1764 mm²

We know that the area of the larger rectangle is 11 times the area of the smaller rectangle. Therefore,

⇒ 11 small rectangles = larger rectangle

⇒ 11(21y) = 168y + 1764

⇒ 231y = 168y + 1764

⇒ 63y = 1764

⇒ y = 28

Therefore, the missing side length of the smaller rectangle is 28 mm.

Finally, to find the area of the larger rectangle, substitute the found value of y into the found expression for its area:

⇒ area = 168y + 1764

⇒ area = 168(28) + 1764

⇒ area = 4704 + 1764

⇒ area = 6468 mm²

User Whyrusleeping
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories