Answer:
![f'(3)= -(13)/(25)](https://img.qammunity.org/2021/formulas/mathematics/college/h3ktvzdfmz7bflr73257s12movafuo3iil.png)
Explanation:
We are asked to find
of function
using definition of derivatives.
Limit definition of derivatives:
![f'(x)= \lim_(h \to 0) (f(x+h)-f(x))/(h)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/lvdpjcfyjyy96ndjoye7lq4o9022vp82c5.png)
Let us find
and
.
![f(3+h)=(3(3+h)+5)/(2(3+h)-1)](https://img.qammunity.org/2021/formulas/mathematics/college/cdew8ssd8bd59l1l864iqkyg6bk2my5uw7.png)
![f(3+h)=(9+3h+5)/(6+2h-1)\\\\f(3+h)=(3h+14)/(2h+5)](https://img.qammunity.org/2021/formulas/mathematics/college/lhu5c00uxp18ic2xy5f48njli5e7uc7agm.png)
![f(3)=(3(3)+5)/(2(3)-1)](https://img.qammunity.org/2021/formulas/mathematics/college/xl42q1uorvnmh463dk5a2n54vwlfahpcod.png)
![f(3)=(9+5)/(6-1)\\\\f(3)=(14)/(5)](https://img.qammunity.org/2021/formulas/mathematics/college/1rqneguvje1gs5k5f4x7pzyzxgn79q95z0.png)
Substituting these values in limit definition of derivatives, we will get:
![f'(3)= \lim_(h \to 0) (f(3+h)-f(3))/(h)](https://img.qammunity.org/2021/formulas/mathematics/college/7sg58cqtij661cogb1bb6cwyyf9vztu4wl.png)
![f'(3)= \lim_(h \to 0) ((3h+14)/(2h+5)-(14)/(5))/(h)](https://img.qammunity.org/2021/formulas/mathematics/college/n6e00d2eryt6hm45n5imzr0x1vbuemdbem.png)
Make a common denominator:
![f'(3)= \lim_(h \to 0) (((3h+14)*5)/((2h+5)*5)-(14(2h+5))/(5(2h+5)))/(h)](https://img.qammunity.org/2021/formulas/mathematics/college/imkr6vag8uck2m7xpi61116vpydx3fn407.png)
![f'(3)= \lim_(h \to 0) ((5(3h+14)-14(2h+5))/(5(2h+5)))/(h)](https://img.qammunity.org/2021/formulas/mathematics/college/lzmcnie8rzpr1vygs2wneyqcgv8i7nwmqa.png)
![f'(3)= \lim_(h \to 0) (5(3h+14)-14(2h+5))/(5h(2h+5))](https://img.qammunity.org/2021/formulas/mathematics/college/ltxzsa5fhy1g3vrizfpc1jb6u8fv9lr7j2.png)
![f'(3)= \lim_(h \to 0) (15h+70-28h-70)/(5h(2h+5))](https://img.qammunity.org/2021/formulas/mathematics/college/gtsmt6mppvf2camo960ik5wgjvqk1f8apx.png)
![f'(3)= \lim_(h \to 0) (-13h)/(5h(2h+5))](https://img.qammunity.org/2021/formulas/mathematics/college/v4788ocny6bki9bk0ksy48d0dv75rkg0oy.png)
Cancel out h:
![f'(3)= \lim_(h \to 0) (-13)/(5(2h+5))](https://img.qammunity.org/2021/formulas/mathematics/college/hd3qwz90wsqnktwhfmzlh8qthklhjrty18.png)
![f'(3)= (-13)/(5(2(0)+5))](https://img.qammunity.org/2021/formulas/mathematics/college/yt1hdcqml5q55b1syw4dyijbk96f23w4f1.png)
![f'(3)= (-13)/(5(5))](https://img.qammunity.org/2021/formulas/mathematics/college/2c39y2sgrnymxx7j8vt2g9psk86tc3uj39.png)
![f'(3)= -(13)/(25)](https://img.qammunity.org/2021/formulas/mathematics/college/h3ktvzdfmz7bflr73257s12movafuo3iil.png)
Therefore,
.