Answer:
1)
![\Delta s=1000\ ft](https://img.qammunity.org/2021/formulas/physics/college/47h9bwkgei33r6ovgx2tacy6nmreq8atsb.png)
2)
![\Delta s'=998.11\ ft.s^(-1)](https://img.qammunity.org/2021/formulas/physics/college/nankqly472n6mdcbvl6dgaz90eyo0jucbe.png)
3)
![t\approx125\ s](https://img.qammunity.org/2021/formulas/physics/college/w7dvsn0pug53hv99aup8ty94dwwkr8vnvb.png)
![t'\approx463.733\ s](https://img.qammunity.org/2021/formulas/physics/college/7mvdgs8zjnh8wggek63fwgmnj9ptwutasn.png)
Step-by-step explanation:
Given:
width of river,
![w=500\ ft](https://img.qammunity.org/2021/formulas/physics/college/lqk7jtlomwrmwesyxj5satuwmt6fjwm6jj.png)
speed of stream with respect to the ground,
![v_s=8\ ft.s^(-1)](https://img.qammunity.org/2021/formulas/physics/college/2yp6gp29wthm3swhehyaxt0ohkbj2vixzf.png)
speed of the swimmer with respect to water,
![v=4\ ft.s^(-1)](https://img.qammunity.org/2021/formulas/physics/college/k7m8jdftgkzbpux0a5884rv8z7byoe4429.png)
Now the resultant of the two velocities perpendicular to each other:
![v_r=√(v^2+v_s^2)](https://img.qammunity.org/2021/formulas/physics/college/znscq6o8xqdihxwdk9d9hxvelyepqo1oxg.png)
![v_r=√(4^2+8^2)](https://img.qammunity.org/2021/formulas/physics/college/6x0yh7bj5oijha0261lzuawzc1y3ez4yts.png)
![v_r=8.9442\ ft.s^(-1)](https://img.qammunity.org/2021/formulas/physics/college/l7qlbtiw4dp2xp7zme0l6jfrcd6pkgneje.png)
Now the angle of the resultant velocity form the vertical:
![\tan\beta=(v_s)/(v)](https://img.qammunity.org/2021/formulas/physics/college/s031b2ww91l02q7wzl8jsq8x7gt9d3wxlg.png)
![\tan\beta=(8)/(4)](https://img.qammunity.org/2021/formulas/physics/college/l4n0crsmpp1qwvg6qgx2i9hxqhfwqqh5tf.png)
![\beta=63.43^(\circ)](https://img.qammunity.org/2021/formulas/physics/college/s6eu5b2z9aoejpc4j5r21wle2v9lfqhwej.png)
- Now the distance swam by the swimmer in this direction be d.
so,
![d.\cos\beta=w](https://img.qammunity.org/2021/formulas/physics/college/p9wotyijhbpaiulq98t8147rnvtcar0kk7.png)
![d* \cos\ 63.43=500](https://img.qammunity.org/2021/formulas/physics/college/xcnjgeg5winfc1qxuu1ml8ioolusjtv613.png)
![d=1118.034\ ft](https://img.qammunity.org/2021/formulas/physics/college/ighou3ji14abri6r42smcveql7m28uvmri.png)
Now the distance swept downward:
![\Delta s=√(d^2-w^2)](https://img.qammunity.org/2021/formulas/physics/college/qy42n4rj8fghs31b4awy2iwl7hr7cv7e4p.png)
![\Delta s=√(1118.034^2-500^2)](https://img.qammunity.org/2021/formulas/physics/college/oookyu6glktx1ehb252bz55ld88txs06ea.png)
![\Delta s=1000\ ft](https://img.qammunity.org/2021/formulas/physics/college/47h9bwkgei33r6ovgx2tacy6nmreq8atsb.png)
2)
On swimming 37° upstream:
The velocity component of stream cancelled by the swimmer:
![v'=v.\cos37](https://img.qammunity.org/2021/formulas/physics/college/ayl4h5ad1emy00rfz08gcpjwzfjdhb5fza.png)
![v'=4* \cos37](https://img.qammunity.org/2021/formulas/physics/college/hjy2ypezbws62duditldpckrutyw7e9k9h.png)
![v'=3.1945\ ft.s^(-1)](https://img.qammunity.org/2021/formulas/physics/college/d4d1lmxwt4wmelk6p5q4zsaaoscnj87mp1.png)
Now the net effective speed of stream sweeping the swimmer:
![v_n=v_s-v'](https://img.qammunity.org/2021/formulas/physics/college/pxt2d5vtcgc0lio3ggdwf92v0xb2y1kq51.png)
![v_n=8-3.1945](https://img.qammunity.org/2021/formulas/physics/college/kuapor1p006f9iuv0hiuknznsei27fq2to.png)
![v_n=4.8055\ ft.s^(-1)](https://img.qammunity.org/2021/formulas/physics/college/3j54zsntznpysuhuk8yd6r81xehgsrv4wb.png)
The component of swimmer's velocity heading directly towards the opposite bank:
![v'_r=v.\sin37](https://img.qammunity.org/2021/formulas/physics/college/6nwpvp6b259xdbe7z2wtl5p51df2ilplzy.png)
![v'_r=4\sin37](https://img.qammunity.org/2021/formulas/physics/college/w374zvtx7uk5mim0vxwdjlxzwvtn7rsbnz.png)
![v'_r=2.4073\ ft.s^(-1)](https://img.qammunity.org/2021/formulas/physics/college/qn34chi05fip1e8r1vch39f0ans12ob9mf.png)
Now the angle of the resultant velocity of the swimmer from the normal to the stream:
![\tan\phi=(v_n)/(v'_r)](https://img.qammunity.org/2021/formulas/physics/college/73h4b2jf78bimmm8etva9av2rebok3pzj9.png)
![\tan\phi=(4.8055)/(2.4073)](https://img.qammunity.org/2021/formulas/physics/college/rci2m7h5zebcff6xgim7t35t0pmfucgcdw.png)
![\phi=63.39^(\circ)](https://img.qammunity.org/2021/formulas/physics/college/60mq4khhycvyehjju7t2lwrt8rqyki4qbr.png)
- Now let the distance swam in this direction be d'.
![d'* \cos\phi=w](https://img.qammunity.org/2021/formulas/physics/college/64echztofr6hj58lx8r7rsj52pt5dy1n09.png)
![d'=(500)/(\cos63.39)](https://img.qammunity.org/2021/formulas/physics/college/i6splwc8pag91wnqv2e4d67ycxcwa5b3ei.png)
![d'=1116.344\ ft](https://img.qammunity.org/2021/formulas/physics/college/cak6u6ljy3kjsr1nxxz1ljl1q69h6grq9z.png)
Now the distance swept downstream:
![\Delta s'=√(d'^2-w^2)](https://img.qammunity.org/2021/formulas/physics/college/j81uo9b295ldzzr66hjpbrvez4w822osre.png)
![\Delta s'=√(1116.344^2-500^2)](https://img.qammunity.org/2021/formulas/physics/college/t31njqc0rlewfc6z88extmmd84ge2d2k61.png)
![\Delta s'=998.11\ ft.s^(-1)](https://img.qammunity.org/2021/formulas/physics/college/nankqly472n6mdcbvl6dgaz90eyo0jucbe.png)
3)
Time taken in crossing the rive in case 1:
![t=(d)/(v_r)](https://img.qammunity.org/2021/formulas/physics/college/eohbgwqw6jh9r83ycs47o5gdm6lg62if75.png)
![t=(1118.034)/(8.9442)](https://img.qammunity.org/2021/formulas/physics/college/aw0unuz8ymhgvy6n9yxkb6092u3t4iyq5g.png)
![t\approx125\ s](https://img.qammunity.org/2021/formulas/physics/college/w7dvsn0pug53hv99aup8ty94dwwkr8vnvb.png)
Time taken in crossing the rive in case 2:
![t'=(d')/(v'_r)](https://img.qammunity.org/2021/formulas/physics/college/b95pe0c3m4rp92997tyankrw1osznqxtng.png)
![t'=(1116.344)/(2.4073)](https://img.qammunity.org/2021/formulas/physics/college/3fllovfan1h3rg3t0c424lzn3g9rtrzblw.png)
![t'\approx463.733\ s](https://img.qammunity.org/2021/formulas/physics/college/7mvdgs8zjnh8wggek63fwgmnj9ptwutasn.png)