152k views
25 votes
Directions: Calculate the area of a circle using 3.14x the radius

1) d = 4.4 mm.
Calculate the area of the circle.

2) d = 3.7 cm.
Calculate the area of the circle.

3) r= 8.3 cm.
Calculate the area of the circle.

4) d = 5.8 yd.
Calculate the area of the circle.


5) d = 1 yd.
Calculate the area of the circle

6) r = 8 ft.
Calculate the area of the circle

1 Answer

12 votes


\qquad\qquad\huge\underline{{\sf Answer}}♨

As we know ~

Area of the circle is :


\qquad \sf  \dashrightarrow \:\pi {r}^(2)

And radius (r) = diameter (d) ÷ 2

[ radius of the circle = half the measure of diameter ]

➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖

Problem 1


\qquad \sf  \dashrightarrow \:r = d / 2


\qquad \sf  \dashrightarrow \:r = 4.4/ 2


\qquad \sf  \dashrightarrow \:r = 2.2 \: mm

Now find the Area ~


\qquad \sf  \dashrightarrow \: \pi {r}^(2)


\qquad \sf  \dashrightarrow \:3.14 * {(2.2)}^(2)


\qquad \sf  \dashrightarrow \:3.14 * {4.84}^{}


\qquad \sf  \dashrightarrow \:area \approx 15.2 \: \: mm {}^(2)

・ .━━━━━━━†━━━━━━━━━.・

problem 2


\qquad \sf  \dashrightarrow \:r = d / 2


\qquad \sf  \dashrightarrow \:r = 3.7 / 2


\qquad \sf  \dashrightarrow \:r = 1.85 \: \: cm

Bow, calculate the Area ~


\qquad \sf  \dashrightarrow \: \pi {r}^(2)


\qquad \sf  \dashrightarrow \:3.14 * (1.85) {}^(2)


\qquad \sf  \dashrightarrow \:3.14 * 3.4225 {}^{}


\qquad \sf  \dashrightarrow \:area \approx 10.75 \: \: cm {}^(2)

・ .━━━━━━━†━━━━━━━━━.・

Problem 3


\qquad \sf  \dashrightarrow \:\pi {r}^(2)


\qquad \sf  \dashrightarrow \:3.14 * (8.3) {}^(2)


\qquad \sf  \dashrightarrow \:3.14 * 68.89


\qquad \sf  \dashrightarrow \:area \approx216.31 \: \: cm {}^(2)

・ .━━━━━━━†━━━━━━━━━.・

Problem 4


\qquad \sf  \dashrightarrow \:r = d / 2


\qquad \sf  \dashrightarrow \:r = 5.8 / 2


\qquad \sf  \dashrightarrow \:r = 2.9 \: \: yd

now, let's calculate area ~


\qquad \sf  \dashrightarrow \:3.14 * {(2.9)}^(2)


\qquad \sf  \dashrightarrow \:3.14 * 8.41


\qquad \sf  \dashrightarrow \:area \approx26.41 \: \: yd {}^(2)

・ .━━━━━━━†━━━━━━━━━.・

problem 5


\qquad \sf  \dashrightarrow \:r = d / 2


\qquad \sf  \dashrightarrow \:r = 1 / 2


\qquad \sf  \dashrightarrow \:r = 0.5 \: \: yd

Now, let's calculate area ~


\qquad \sf  \dashrightarrow \:\pi {r}^(2)


\qquad \sf  \dashrightarrow \:3.14 * (0.5) {}^(2)


\qquad \sf  \dashrightarrow \:3.14 * 0.25


\qquad \sf  \dashrightarrow \:area \approx0.785 \: \: yd {}^(2)

・ .━━━━━━━†━━━━━━━━━.・

problem 6


\qquad \sf  \dashrightarrow \:\pi {r}^(2)


\qquad \sf  \dashrightarrow \:3.14 * {(8)}^(2)


\qquad \sf  \dashrightarrow \:3.14 * 64


\qquad \sf  \dashrightarrow \:area = 200.96 \: \: yd {}^(2)

➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖

User Endrigoantonini
by
4.8k points