152k views
25 votes
Directions: Calculate the area of a circle using 3.14x the radius

1) d = 4.4 mm.
Calculate the area of the circle.

2) d = 3.7 cm.
Calculate the area of the circle.

3) r= 8.3 cm.
Calculate the area of the circle.

4) d = 5.8 yd.
Calculate the area of the circle.


5) d = 1 yd.
Calculate the area of the circle

6) r = 8 ft.
Calculate the area of the circle

1 Answer

12 votes


\qquad\qquad\huge\underline{{\sf Answer}}♨

As we know ~

Area of the circle is :


\qquad \sf  \dashrightarrow \:\pi {r}^(2)

And radius (r) = diameter (d) ÷ 2

[ radius of the circle = half the measure of diameter ]

➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖

Problem 1


\qquad \sf  \dashrightarrow \:r = d / 2


\qquad \sf  \dashrightarrow \:r = 4.4/ 2


\qquad \sf  \dashrightarrow \:r = 2.2 \: mm

Now find the Area ~


\qquad \sf  \dashrightarrow \: \pi {r}^(2)


\qquad \sf  \dashrightarrow \:3.14 * {(2.2)}^(2)


\qquad \sf  \dashrightarrow \:3.14 * {4.84}^{}


\qquad \sf  \dashrightarrow \:area \approx 15.2 \: \: mm {}^(2)

・ .━━━━━━━†━━━━━━━━━.・

problem 2


\qquad \sf  \dashrightarrow \:r = d / 2


\qquad \sf  \dashrightarrow \:r = 3.7 / 2


\qquad \sf  \dashrightarrow \:r = 1.85 \: \: cm

Bow, calculate the Area ~


\qquad \sf  \dashrightarrow \: \pi {r}^(2)


\qquad \sf  \dashrightarrow \:3.14 * (1.85) {}^(2)


\qquad \sf  \dashrightarrow \:3.14 * 3.4225 {}^{}


\qquad \sf  \dashrightarrow \:area \approx 10.75 \: \: cm {}^(2)

・ .━━━━━━━†━━━━━━━━━.・

Problem 3


\qquad \sf  \dashrightarrow \:\pi {r}^(2)


\qquad \sf  \dashrightarrow \:3.14 * (8.3) {}^(2)


\qquad \sf  \dashrightarrow \:3.14 * 68.89


\qquad \sf  \dashrightarrow \:area \approx216.31 \: \: cm {}^(2)

・ .━━━━━━━†━━━━━━━━━.・

Problem 4


\qquad \sf  \dashrightarrow \:r = d / 2


\qquad \sf  \dashrightarrow \:r = 5.8 / 2


\qquad \sf  \dashrightarrow \:r = 2.9 \: \: yd

now, let's calculate area ~


\qquad \sf  \dashrightarrow \:3.14 * {(2.9)}^(2)


\qquad \sf  \dashrightarrow \:3.14 * 8.41


\qquad \sf  \dashrightarrow \:area \approx26.41 \: \: yd {}^(2)

・ .━━━━━━━†━━━━━━━━━.・

problem 5


\qquad \sf  \dashrightarrow \:r = d / 2


\qquad \sf  \dashrightarrow \:r = 1 / 2


\qquad \sf  \dashrightarrow \:r = 0.5 \: \: yd

Now, let's calculate area ~


\qquad \sf  \dashrightarrow \:\pi {r}^(2)


\qquad \sf  \dashrightarrow \:3.14 * (0.5) {}^(2)


\qquad \sf  \dashrightarrow \:3.14 * 0.25


\qquad \sf  \dashrightarrow \:area \approx0.785 \: \: yd {}^(2)

・ .━━━━━━━†━━━━━━━━━.・

problem 6


\qquad \sf  \dashrightarrow \:\pi {r}^(2)


\qquad \sf  \dashrightarrow \:3.14 * {(8)}^(2)


\qquad \sf  \dashrightarrow \:3.14 * 64


\qquad \sf  \dashrightarrow \:area = 200.96 \: \: yd {}^(2)

➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖

User Endrigoantonini
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories