Answer:
(-2,-3)
Explanation:
Put the equations over each other.
![\binom{x - y = 1}{ - x + 3y = - 7 }](https://img.qammunity.org/2023/formulas/mathematics/college/7egkq61us0tec09oi4iv5uddiwzkpixocy.png)
Subtract the x values.
![\binom{ - y = 1}{3y = - 7}](https://img.qammunity.org/2023/formulas/mathematics/college/rd3v0soxdgftmftzm480exklh7yz6uv8qq.png)
Subtract on both sides.
![2y = - 6](https://img.qammunity.org/2023/formulas/mathematics/college/k53lqmu49n4t6gnxneijywi3f70bzz297h.png)
Divide on both sides.
![y = - 3](https://img.qammunity.org/2023/formulas/mathematics/high-school/nrebvhyucd83usv7th8iktu8yvvsko48qf.png)
Insert the y value into one of the equations.
![x - ( - 3) = 1](https://img.qammunity.org/2023/formulas/mathematics/college/i4ddg080mwnbui1arhvo1gjfx1md8tqb2r.png)
Get rid of the parenthesis.
![x + 3 = 1](https://img.qammunity.org/2023/formulas/mathematics/college/mqcw1tqf59zept3rt5c9z88fbtc2g7e977.png)
Subtract on both sides.
![x = - 2](https://img.qammunity.org/2023/formulas/mathematics/high-school/pbzobfeii553socaidjgfpxd9y8wktxu0z.png)
You could also individually plug in each solution into both equations to see if they are true.