Answer:
a) X 1 2 3 4 5
P(X) 0.7 0.15 0.10 0.03 0.02
b)
![P(X \leq 2) = P(X=1) +P(X=2) = 0.7+0.15=0.85](https://img.qammunity.org/2021/formulas/mathematics/college/t6bx4zhchycz6xgmqtdmd4zxdh90c7kbtl.png)
c)
![P(X >3) = 1-P(X \leq 3) = 1-[P(X=1) +P(X=2)+P(X=3)]=1-[0.7+0.15+0.1]= 0.05](https://img.qammunity.org/2021/formulas/mathematics/college/qx13a1x9ehxhbkzufbhf0vt0o77oqyr0sf.png)
d)
![E(X) = \sum_(i=1)^n X_i P(X_i) = 1*0.7 +2*0.15+ 3*0.1+4*0.03+ 5*0.02= 1.52](https://img.qammunity.org/2021/formulas/mathematics/college/zlxmxa5lzc0xbj59ifze6dcz2e540z10l2.png)
e)
![E(X^2) = \sum_(i=1)^n X^2_i P(X_i) = 1*0.7 +4*0.15+ 9*0.1+16*0.03+ 25*0.02=3.18](https://img.qammunity.org/2021/formulas/mathematics/college/3iej1pksuarbrodggojj9cc9lvd8voj857.png)
![Var(X) = E(X^2) -[E(X)]^2= 3.18- (1.52)^2 = 0.8996](https://img.qammunity.org/2021/formulas/mathematics/college/9hz5ovpv15ie88k26jmtax46swsew8zbgo.png)
![\sigma= √(Var(X))= √(0.8996)= 0.933](https://img.qammunity.org/2021/formulas/mathematics/college/a67hom5ifmhpt480avr2tgln1o1h9uytm1.png)
Explanation:
Part a
From the information given we define the probability distribution like this:
X 1 2 3 4 5
P(X) 0.7 0.15 0.10 0.03 0.02
And we see that the sum of the probabilities is 1 so then we have a probability distribution
Part b
We want to find this probability:
![P(X \leq 2) = P(X=1) +P(X=2) = 0.7+0.15=0.85](https://img.qammunity.org/2021/formulas/mathematics/college/t6bx4zhchycz6xgmqtdmd4zxdh90c7kbtl.png)
Part c
We want to find this probability
![P(X>3)](https://img.qammunity.org/2021/formulas/mathematics/college/yz92koas9firamyq4xljut1apsqy1zcol1.png)
And for this case we can use the complement rule and we got:
![P(X >3) = 1-P(X \leq 3) = 1-[P(X=1) +P(X=2)+P(X=3)]=1-[0.7+0.15+0.1]= 0.05](https://img.qammunity.org/2021/formulas/mathematics/college/qx13a1x9ehxhbkzufbhf0vt0o77oqyr0sf.png)
Part d
We can find the expected value with this formula:
![E(X) = \sum_(i=1)^n X_i P(X_i) = 1*0.7 +2*0.15+ 3*0.1+4*0.03+ 5*0.02= 1.52](https://img.qammunity.org/2021/formulas/mathematics/college/zlxmxa5lzc0xbj59ifze6dcz2e540z10l2.png)
Part e
For this case we need to find first the second moment given by:
![E(X^2) = \sum_(i=1)^n X^2_i P(X_i) = 1*0.7 +4*0.15+ 9*0.1+16*0.03+ 25*0.02=3.18](https://img.qammunity.org/2021/formulas/mathematics/college/3iej1pksuarbrodggojj9cc9lvd8voj857.png)
And we can find the variance with the following formula:
![Var(X) = E(X^2) -[E(X)]^2= 3.18- (1.52)^2 = 0.8996](https://img.qammunity.org/2021/formulas/mathematics/college/9hz5ovpv15ie88k26jmtax46swsew8zbgo.png)
And we can find the deviation taking the square root of the variance:
![\sigma= √(Var(X))= √(0.8996)= 0.933](https://img.qammunity.org/2021/formulas/mathematics/college/a67hom5ifmhpt480avr2tgln1o1h9uytm1.png)