226.285 mm³ vitamin mix is needed
Solution:
Radius of the capsule = 3 mm
Volume of the hemisphere =
![(2)/(3) \pi r^(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/1ypcuagbz7frk3u79ihydgihr8x2jxb8sg.png)
![$\begin{aligned}&=(2)/(3) \pi * 3^(3)\\&=18 \pi\end{aligned}](https://img.qammunity.org/2021/formulas/mathematics/high-school/mgs0sm674zl6h742bpn0aywyooamv1mtsg.png)
Volume of the hemisphere = 18π
Volume of the 2 hemisphere = 2 × 18π = 36π
Radius of the cylinder = 3 mm
Height of the cylinder = 10 – 3 – 3 = 4 mm
Volume of the cylinder =
![$\pi r^(2) h](https://img.qammunity.org/2021/formulas/mathematics/high-school/172kwknb6sjzvhlidjej1zk7iasz0i71dk.png)
![$\begin{aligned}&=\pi * 3^(2) * 4\\&=36 \pi\end{aligned}](https://img.qammunity.org/2021/formulas/mathematics/high-school/l3zu4xgrfn6sag2n7th2gsvb0nped1i6ax.png)
Volume of the cylinder = 36π
Volume of the capsule = volume of the 2 hemisphere + volume of the cylinder
= 36π + 36π
= 72π
![$=72 * (22)/(7)](https://img.qammunity.org/2021/formulas/mathematics/high-school/wfpp9ghov84p63ccglcill9x9nnjapaxxh.png)
= 226.285 mm³
Volume of the capsule = 226.285 mm³
Hence 226.285 mm³ vitamin mix is needed.