Answer:
The velocity function is
.
The acceleration function is
.
When t = 44, the velocity is
.
When t = 44, the acceleration is
.
Explanation:
We know that the position function is given by
![s(t)=5t^2+5t](https://img.qammunity.org/2021/formulas/mathematics/college/cnjrpr8dru2fsrkcn0t8hcup35f1x0mymv.png)
Velocity is defined as the rate of change of position or the rate of displacement. If you take the derivative of the position function you get the instantaneous velocity function.
![v(t)=(ds)/(dt)](https://img.qammunity.org/2021/formulas/mathematics/college/4iuyessj5i8mmpvjh1m2vxeegntvt5k4l3.png)
Acceleration is defined as the rate of change of velocity. If you take the derivative of the instantaneous velocity function you get the instantaneous acceleration function.
![a(t)=(dv)/(dt)](https://img.qammunity.org/2021/formulas/mathematics/college/bamml9jfdoxait51dkl80to6w3ebb7dlkn.png)
The instantaneous velocity function is given by
![v(t)=(d)/(dt) s(t)=(d)/(dt)(5t^2+5t)\\\\\mathrm{Apply\:the\:Sum/Difference\:Rule}:\quad \left(f\pm g\right)'=f\:'\pm g'\\\\v(t)=(d)/(dt)\left(5t^2\right)+(d)/(dt)\left(5t\right)\\\\\mathrm{Apply\:the\:Power\:Rule}:\quad (d)/(dx)\left(x^a\right)=a\cdot x^(a-1)\\\\v(t)=10t+(d)/(dt)\left(5t\right)\\\\\mathrm{Apply\:the\:common\:derivative}:\quad (d)/(dt)\left(t\right)=1\\\\v(t)=10t+5](https://img.qammunity.org/2021/formulas/mathematics/college/2xd63poelebxxexlao8p9tbj1xcxvyrwjk.png)
The instantaneous acceleration function is given by
![a(t)=(dv)/(dt) =(d)/(dt)(10t+5)\\\\\mathrm{Apply\:the\:Sum/Difference\:Rule}:\quad \left(f\pm g\right)'=f\:'\pm g'\\\\a(t)=(d)/(dt)\left(10t\right)+(d)/(dt)\left(5\right)\\\\a(t)=10](https://img.qammunity.org/2021/formulas/mathematics/college/dwj302vakt9sl4n5vvk9lxnvhthp3lbnxz.png)
To find the velocity and acceleration when t = 44, we substitute this value into the velocity and acceleration functions
![v(44)=10(44)+5\\v(44)=445 \:(ft)/(s)](https://img.qammunity.org/2021/formulas/mathematics/college/ke2af0s9zvy8n8zov7x4eke0f34wivl4du.png)
![a(44)=10\: (ft)/(s^2)](https://img.qammunity.org/2021/formulas/mathematics/college/842dcemd7cf43wpnjtci5yfscmq9l2zg82.png)