157k views
1 vote
Find the impulse of a 50. kg object under the following scenarios:

a. The object accelerates to 7.5 m/s from rest.
b. The object stops from a velocity of 12.0 m/s.
C. The object change in velocity from 2.2 m/s to 6.3
d. The object hits the ground with 2.5 m/s and rebounds with the same speed

1 Answer

3 votes

Answer:

  • a.
    J = 375\, \rm N \cdot s.
  • b.
    J = -600\; \rm N \cdot s.
  • c.
    J = 205\; \rm N \cdot s.
  • d.
    J = -250\; \rm N \cdot s.

Step-by-step explanation:

When the velocity of an object changes, it would experience an impulse. If the mass of the object stays the same, and that the object moves along a line, the value of the impulse
J would be:


J = m \cdot \Delta v, where


  • m is the mass of the object, and

  • \Delta v is the change in the velocity of the object.

On the other hand, the change in the object's velocity can be found with the equation:


\Delta v = v_{\text{final}} - v_\text{initial}.

Note that if
m is in
\rm kg and
\Delta v is in
\rm m \cdot s^(-1), the unit of
J would be
\rm N \cdot s.

a.


v_\text{initial} = 0\; \rm m \cdot s^(-1).


v_\text{final} = 7.5\; \rm m \cdot s^(-1).


\Delta v = v_{\text{final}} - v_\text{initial} = 7.5\; \rm m \cdot s^(-1).


J = m \cdot \Delta v = 50 * 7.5 = 375\; \rm N \cdot s.

b.


v_\text{initial} = 12.0\; \rm m \cdot s^(-1).


v_\text{final} = 0\; \rm m \cdot s^(-1).


\Delta v = v_{\text{final}} - v_\text{initial} = -12.0\; \rm m \cdot s^(-1)


J = m \cdot \Delta v = 50 * 12.0 = 600\; \rm N \cdot s.

c.


v_\text{initial} = 2.2\; \rm m \cdot s^(-1).


v_\text{final} = 6.3\; \rm m \cdot s^(-1).


\Delta v = v_{\text{final}} - v_\text{initial} = 4.1\; \rm m \cdot s^(-1).


J = m \cdot \Delta v = 50 * 4.1 = 201\; \rm N \cdot s.

d.


v_\text{initial} = 2.5\; \rm m \cdot s^(-1).


v_\text{final} = -2.5\; \rm m \cdot s^(-1).

Note that
v_\text{final} and
v_\text{initial} are of opposite signs. The reason is that the object's velocity has changed direction in this period.


\Delta v = v_{\text{final}} - v_\text{initial} = -5.0\; \rm m \cdot s^(-1).


J = m \cdot \Delta v = 50 * (-5.0) = -250\; \rm N \cdot s.

User Marti
by
8.0k points