Answer:
(a) mass of block ice=86.7 kg
(b) Distance=17.2179 m
Step-by-step explanation:
Given data
For part (a)
First find acceleration then mass by ΣFx=ma
Let +x be the direction of force
ΣFx=79 N
x-x₀=10.5 m
t=4.80 s
Initial velocity V₀=0 m/s
![x-x_(o)=v_(o)t+(1/2)at^(2)\\ 10.5m=0+(0.5)a(4.80s)^(2)\\ 10.5m=11.52a\\a=10.5/11.52\\a=0.911m/s^(2)](https://img.qammunity.org/2021/formulas/physics/college/k038hcse724q9n29zprszgr3nyfu8mwx7m.png)
Now ΣFx=ma
So
![79N=m(0.911m/s^(2) )\\m=79/0.911\\m=86.7kg](https://img.qammunity.org/2021/formulas/physics/college/518158um40onjg1gdnfsbczqb9wna68cis.png)
For part (b)
First calculate the speed at the end period 4.50s of applied force
Then use the ending velocity as initial velocity in the second part of motion
After first 4.50 seconds
![v=v_(o)+at\\ v=0+(0.911m/s^(2) )(4.50s)\\v=4.0995m/s\\](https://img.qammunity.org/2021/formulas/physics/college/77o86lbfre15iywydutucuv11bohd2k9za.png)
acceleration ax=0 m/s²
velocity v=constant
So
![x-x_(o)=vt+(1/2)a_(x)t^(2)\\x-x_(o)=(4.0995m/s)(4.20s)+0\\x-x_(o)=17.2179m](https://img.qammunity.org/2021/formulas/physics/college/1yb3owx4jh58qm5sswljuwibupql053u51.png)