Answer: c(p)= 0.18 p when
![0 \leq p < 500](https://img.qammunity.org/2021/formulas/mathematics/high-school/btf9pkhzzzj6i74q73yv1zb8e99tg3vsp8.png)
0.24 p when
![500 \leq p \leq 2000](https://img.qammunity.org/2021/formulas/mathematics/high-school/dlmayqem28z3ao8ezzv2smxrblqlq6p09n.png)
0.27 p when
![p \geq 2000](https://img.qammunity.org/2021/formulas/mathematics/high-school/f8k528b2mg8avjbg82xvyuoasfvoxrgp9k.png)
Explanation:
If p is the profit then and from the question we can relate as:
The 18% commission is for profits under $500
The 24% commission is for profits from $500 to $2,000
The 27% commission is for profits above $2,000
So, in terms of p, c(p) is given as:
c(p)= 0.18 p when
![0 \leq p < 500](https://img.qammunity.org/2021/formulas/mathematics/high-school/btf9pkhzzzj6i74q73yv1zb8e99tg3vsp8.png)
0.24 p when
![500 \leq p \leq 2000](https://img.qammunity.org/2021/formulas/mathematics/high-school/dlmayqem28z3ao8ezzv2smxrblqlq6p09n.png)
0.27 p when
![p \geq 2000](https://img.qammunity.org/2021/formulas/mathematics/high-school/f8k528b2mg8avjbg82xvyuoasfvoxrgp9k.png)