Answer:
r= [ -2, -3 ]
Explanation:
for
y= t^r
then
y' =r*t^(r-1)
y''= r*(r-1)*t^(r-2)
thus if
t²y'' + 6t*y' + 6y = 0
r*(r-1)*t^(r-2) * t² + 6*t*r*t^(r-1) + 6*t^r = 0
t^r *[ r(r-1) + 6*r + 6 ] =0
since t>0 , then [ r(r-1) + 6*r + 6 ] =0
r(r-1) + 6*r + 6 =0
r² - r + 6*r + 6 = 0
r² + 5*r + 6 = 0
r₁,r₂ = [-5 ±√(5² - 4*1*6)]/2*1
r₁ = (-5+1)/2 = -2
r₂ = (-5-1)/2 = -3
then r= [ -2, -3 ]