91.1k views
1 vote
Express the fifth roots of unity in standard form a + bi. with 1 + 0i

User DaveKub
by
4.4k points

1 Answer

4 votes

Answer:

For K=0


cos((0+2\pi 0)/(5))+isin((0+2\pi 0)/(5))\\cos(0)+isin(0)=1+i0

For K=1:


cos((0+2\pi 1)/(5))+isin((0+2\pi 1)/(5))\\cos(2\pi/5)+isin(2\pi/5)=0.3090+i0.9510

For K=2:


cos((0+2\pi 2)/(5) )+isin((0+2\pi 2)/(5) )\\cos(4\pi/5)+isin(4\pi/5)=-0.809+i0.587

For K=3:


cos((0+2\pi 3)/(5) )+isin((0+2\pi 3)/(5) )\\cos(6\pi/5)+isin(6\pi/5)=-0.809-i0.587

For K=4:


cos((0+2\pi 4)/(5) )+isin((0+2\pi 4)/(5) )\\cos(8\pi/5)+isin(8\pi/5)=0.3091-i0.9510

Explanation:

Fifth Root is given by:


\sqrt[5]{z}=1+0i

The above equation will become:


z=(1+0i)^5

It can be written as:


z=[cos(0)+isin(0)]^5

|z|=1,

According to De-moivre's Theorem:


z=cos((0)/(5))+isin((0)/(5))\\ z=cos(0)+isin(0)

Now, Fifth Roots of unity in standard form a + bi :


\sqrt[5]{z}=[{cos(0+2\pi k)+isin(0+2\pi k)}]^(1/5)

k=0,1,2,3,4

For K=0


cos((0+2\pi 0)/(5))+isin((0+2\pi 0)/(5))\\cos(0)+isin(0)=1+i0

For K=1:


cos((0+2\pi 1)/(5))+isin((0+2\pi 1)/(5))\\cos(2\pi/5)+isin(2\pi/5)=0.3090+i0.9510

For K=2:


cos((0+2\pi 2)/(5) )+isin((0+2\pi 2)/(5) )\\cos(4\pi/5)+isin(4\pi/5)=-0.809+i0.587

For K=3:


cos((0+2\pi 3)/(5) )+isin((0+2\pi 3)/(5) )\\cos(6\pi/5)+isin(6\pi/5)=-0.809-i0.587

For K=4:


cos((0+2\pi 4)/(5) )+isin((0+2\pi 4)/(5) )\\cos(8\pi/5)+isin(8\pi/5)=0.3091-i0.9510

User Carmelle
by
4.9k points