Answer:
There are no true solutions to the equation.
Explanation:
The correct equation is
![y+1=√(-2y-3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/r448vvwnjn13w4bm79iw0x2r3880p6c62t.png)
Solve for y
squared both sides
![(y+1)^2=(-2y-3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/9gda9o9h51afhpfl234we26c2bqi7018pa.png)
![(y^2+2y+1)=(-2y-3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/bzsdvh3twu0mfchuhaywjuuovxt4tvl9y7.png)
![y^2+2y+1+2y+3=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/s63mt5fj9565hfetepfit0bv12r1kiehwt.png)
![y^2+4y+4=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/4ycoxqrpoa9gpko6m086jr6a8mssrzyguu.png)
![(y+2)(y+2)=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/mbukws0xd85510kb8eeyjwrdxex91itspw.png)
![y=-2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/3ze6v04plzj0p58wjsvzf9nz6chx9o38kn.png)
Verify
substitute the value of y in the original expression
![-2+1=√(-2(-2)-3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/a17a8xq875ty9urjpg4desyi29t1awllk2.png)
----> is not true
therefore
There are no true solutions to the equation.