56.4k views
3 votes
PLEASE HELP ASAP

Find (ƒ • g)(x) where ƒ(x) = x2 + 2, g(x) = x – 3.

(ƒ • g)(x) = x3 – 6

(ƒ • g)(x) = x2 + x – 1

(ƒ • g)(x) = x3 – 3x2 + 2x – 6

(ƒ • g)(x) = x2 – x + 5

1 Answer

0 votes

Answer:

option 3.

(ƒ • g)(x) = x3 – 3x2 + 2x – 6

Explanation:

ƒ(x) = x2 + 2

g(x) = x – 3

if we look at the functions they are multiplying, so we have to multiply the equivalents to the functions among themselves

(ƒ • g)(x) = (x2 + 2) • ( x - 3)

(ƒ • g)(x) = (x2 * x) + (x2 * -3) + ( 2 * x) + (2 * -3)

(ƒ • g)(x) = (x3) + (-3x2) + (2x) + (-6)

(ƒ • g)(x) = x3 - 3x2 + 2x - 6

User Kent Hu
by
3.7k points