Final answer:
The expansion of
using the Binomial Theorem is
The coefficient of the
term is 20. If b = 1, the expression simplifies to
![a^6 + 6a^4 + 15a^2 + 20 + 15/a^2 + 6/a^4 + 1/a^6.](https://img.qammunity.org/2021/formulas/mathematics/middle-school/m7yjioj1wx6i8vbgcc02aqwltczpqs4bi5.png)
Step-by-step explanation:
To expand (a + b/a)^6 using the Binomial Theorem, we need to apply the formula which states that the expansion of (a + b)^n is:
an + nan-1b + n(n-1)an-262/2! + n(n-1)(n-2)an-363/3! + ...
Applying this formula, we get:
![a^6 + 6a^5(b/a) + 15a^4(b/a)^2 + 20a^3(b/a)^3 + 15a^2(b/a)^4 + 6a(b/a)^5 + (b/a)^6](https://img.qammunity.org/2021/formulas/mathematics/middle-school/19fsxmucip5btutbjxwuxx1ypb3xh97dq3.png)
Simplifying, we have:
![a^6 + 6a^4b + 15a^2b^2 + 20b^3 + 15ab^3/a^2 + 6b^4/a + b^6/a^6](https://img.qammunity.org/2021/formulas/mathematics/middle-school/t27hbh8eecn4bc7jq2xv0d6ipt7z59vs3y.png)
The coefficient of the
term is then 20.
If we let b = 1, the expression simplifies to:
![a^6 + 6a^4 + 15a^2 + 20 + 15/a^2 + 6/a^4 + 1/a^6](https://img.qammunity.org/2021/formulas/mathematics/middle-school/s0ffuy8q3yg29hlwmqpc12if67tqjsl3rf.png)