![$x=(53)/(2)^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xu9z062tea9ixq2o4sdl5nlen4dgm3le8p.png)
Solution:
Let us first define the exterior angle theorem of triangles.
Exterior angle theorem:
The measure of the exterior angle is equal to the sum of the measures of the two opposite interior angles.
In the given triangle,
Measure of exterior angle = 98°
Measure of one opposite interior angle = 44°
Measure of other opposite interior angle = (2x + 1)°
To find the value of x:
Using exterior angle theorem,
⇒ 44° + (2x + 1)° = 98°
⇒ 44° + 2x° + 1° = 98°
⇒ 45° + 2x° = 98°
⇒ 2x° = 98° – 45°
⇒ 2x° = 53°
![$\Rightarrow x=(53)/(2)^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/a2gtewchupvi1v9wz4vbqsjkbfijqdstyv.png)
Hence the value of x is
.