Answer:
Height of the box = 11.5 in
Explanation:
Let h be the height of the box.
Assuming the volume of the Box is
.
Given:
Length = Height - 4 = h - 4
Width = 3 in
We need to find the height of the box.
Solution:
We know that the volume of the box.
![Volume = Length* height* width](https://img.qammunity.org/2021/formulas/mathematics/middle-school/nw41n424xg0739s3b3lqw2l7himtybwy5i.png)
Substitute all given value in above formula.
![258.75 = (h-4)* h* 3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/x6eaj4puvbnf9973fw63jfcunryf2azwad.png)
Rewrite the equation as:
![258.75 = 3h(h-4)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/4dxg10i0rfqxdje0ctjph7dc6lg1xt2u9q.png)
![258.75 = 3h^2-12h](https://img.qammunity.org/2021/formulas/mathematics/middle-school/bbmufgmcvn1qfjpz3kvqnb0ztt4eibdw10.png)
![3h^2-12h-258.75=0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/7dnh2wwpr3o2qam3gg8ms0b84yb5dc08ei.png)
whole equation divided by 3.
![h^2-4h-86.25=0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/24k9jcoanq4ium33katmuoy6cc9kijtkd6.png)
Use quadratic formula with
![h=\frac{-b\pm \sqrt{(b)^(2)-4ac}}{2a}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/otjnjnjp2aqt1pruxwr3iaoewmhrlw5hml.png)
Put these a, b and c value in above equation.
![h=\frac{-(-4)\pm \sqrt{(-4)^(2)-4(1)(-86.25)}}{2(1)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/wk41z9l7a9a0go2z2c60c592oh21v34t0y.png)
![h=(4\pm √(16+345))/(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/rtht1mw5tueh6sxc271tw519gi43p7xuo7.png)
![h=(4\pm √(361))/(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/p00x840792z6q1q0q1o5v9pyksq0okbyme.png)
![h=(4\pm 19)/(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/gvtf58dmtv7h6dqcfsjge3syzjtqhk04pk.png)
For positive sign
h = 11.5 in
For negative sign
![h=(-15)/(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/8kkkgxg6fdmurqd74ywjb4bzd06oepmgnf.png)
h = -7.5
We take positive value of h.
Therefore, the height of the box h = 11.5 in