71.9k views
1 vote
What is the area of this rectangle?
11.2 cm
5.1 cm

User Nema
by
3.4k points

2 Answers

11 votes

Given:

  • length= 11.2 cm
  • width= 5.1 cm

To find:

The area of the given rectangle.

Solution:


a = length * width


a = 11.2 * 5.1


a = 57.12 \: {cm}^(2)

Therefore, the area of the given rectangle is 57.12 square centimeters.

User Asksol
by
4.4k points
12 votes

Answer :-

  • Area of Rectangle is 57.12 cm² .

Explanation :-

As per the provided information in the given question, we have been given that the Length of Rectangle is 11.2 cm . Its Breadth is given as 5.1 cm . And, we have been asked to calculate the Area of Rectangle .

For calculating the Area , we will use the Formula :-


\bigstar \: \: \: \boxed {\sf { \: Area \: of \: Rectangle \: = \: Lenght \: * \: Breadth \: }}

Therefore , by Substituting the given values in the above Formula :-


\dag \: \: \: \sf {Area \: of \: Rectangle \: = \: Lenght \: * \: Breadth}


\longmapsto \: \: \: \sf {Area \: of \: Rectangle \: = \: 11.2 \: * \: 5.1}


\longmapsto \: \: \: \textbf {\textsf {Area \: of \: Rectangle \: = \: 57.12 }}

Hence :-

  • Area of Rectangle = 57.12 cm² .


\underline {\rule {205pt} {4pt}}

Additional Information :-


\begin{gathered} \begin{gathered} \begin{gathered}\begin{gathered}\boxed{\begin{array}{c} \\ \underline{ { \textbf {\textsf \red{ \dag \: \: More \: Formulas \: \: \dag}}}} \\ \\ \\ \footnotesize \bigstar \: \bf{Area \: _(Square) = Side * Side} \\ \\ \\ \footnotesize\bigstar \: \bf{Area \: _(Rectangle) = Lenght * Breadth} \\ \\ \\ \footnotesize \bigstar \: \bf{Area \: _(Triangle) = (1)/(2) * Base * Height } \\ \\ \\ \footnotesize \bigstar \: \bf{Area \: _(Parallelogram) = Base * Height} \\ \\ \\ \footnotesize \bigstar \: \bf{Area \: _(Trapezium) = (1)/(2) * [ \: A + B \: ] * Height } \\ \\ \\ \footnotesize \bigstar \: \bf {Area \: _(Rhombus) = (1)/(2) * Diagonal \: 1 * Diagonal \: 2}\end{array}}\end{gathered}\end{gathered} \end{gathered} \end{gathered}


\underline {\rule {205pt} {4pt}}

Note :-

  • Kindly Scroll the Screen from Right to Left for Better View .
User Kevin Stone
by
4.7k points