The greatest possible value of the second root, β = 54
Explanation:
The given quadratic equation is:
![x^2-5mx+6m^2=0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/9ha39yju0xzgams1axiq8uafgg273hmgfp.png)
Let α and β be the roots of the given quadratic equation.
α = 36
To find, the greatest possible value of the second root ( β) = ?
∴ The sum of the roots,
α + β =
![(-b)/(a)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/35cs00qu8gaw05tv430e897hwjw3ey2yyk.png)
⇒ 36 + β =
⇒ 5m = 36 + β ............. (1)
The product of the roots,
α.β =
![(c)/(a)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/twuq0mqh2y2a76p7fbextpzhvn34phl0ke.png)
⇒
![36.\beta=(6m^2)/(1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/m4pqsffsynuk6fqazicmii7t854aka8d3f.png)
⇒
............. (2)
From equations (1) and (2), we get
⇒
![((36+\beta)/(5))^(2)=6\beta](https://img.qammunity.org/2021/formulas/mathematics/middle-school/igiclonsh5kvm980bo7pi7wdgqa37nii1a.png)
⇒
![\beta^2-78\beta+1296=0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/pk0sw5mqkhi5zw45zq3ztsua97k36c577n.png)
⇒
![\beta^2-54B\beta-24B\beta+1296=0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2x9u45uiqmttsciqger5od6k5glr0kwutq.png)
⇒ β(β - 54) - 24(β - 54) = 0
⇒ (β - 54)(β - 24) = 0
⇒ β - 54 = 0 or, β - 24 = 0
⇒ β = 54 or, β = 24
∴ The greatest possible value of the second root, β = 54