47.4k views
3 votes
Use f(x) = 1)2 and f^-1(x) = 2x to solve the problems. a) f(2) b)f^-1(1) c)f^-1(f(2))​

User Joakim M
by
4.0k points

1 Answer

3 votes

a) f (2) = 1

b)
f^(-1)(1)=2

c)
f^(-1)(f(2))=2

Explanation:


f^(-1) - Indicates that we have to find the inverse of the function

Given data:


f(x)=\left((1)/(2)\right) x --------> eq.1


f^(-1)(x)=2 x ---------> eq.2

To find
f(2), f^(-1)(1), f^(-1)(f(2))

Case a)

Now, substitute x = 2 in the equation 1 to find f (2)


f(2)=\left((1)/(2)\right) * 2=1

Case b)

Now, substitute x = 1 in the equation 2 to find
f^(-1)(1)


f^(-1)(1)=2(1)=2

Case c)

In general,


f^(-1)(f(x))=f\left(f^(-1)(x)\right)=x

Thereby,


f^(-1)(f(2))=2 \text { where } x=2

User Oktapodi
by
4.0k points