Answer: Activation energy
![E_(a)=110.243 kJ/mol](https://img.qammunity.org/2021/formulas/physics/college/fi8p6529v4g1pu3t7pah4nu01sd0umqk3k.png)
Step-by-step explanation:
Arrhenius expression activation energy is given by
![k=Ae^{(-E_(a))/(RT)](https://img.qammunity.org/2021/formulas/physics/college/d28ip1h6hp0gxvylkwdvdl5wo6evk8wjg3.png)
where
is the rate constant,
is the pre-exponential factor
=The gas constant is 8.314 J / mol·K and
is temperature
By substituting the values in the above equation we get two equations
![k_(1)=Ae^{(-E_(a))/(RT_(1))}\\9* 10^(-14)=Ae^{(-E_(a))/(8.314* 600)}...................(1)\\k_(2)=Ae^{(-E_(a))/(RT_(2))}\\6* 10^(-11)=Ae^{(-E_(a))/(8.314* 850)}...................(2)](https://img.qammunity.org/2021/formulas/physics/college/1dn3xeegan1f0nsvroq9pzfoc1ywjshe7g.png)
by solving 1 and 2, we get
![1.5* 10^(-3)=\frac{e^{(-E_(a))/(8.314* 600)}}{e^{(-E_(a))/(8.314* 850)}}\\1.5* 10^(-3)\tiimes {e^{(-E_(a))/(8.314* 850)}={e^{(-E_(a))/(8.314* 600)}\\ln(1.5* 10^(-3))\tiimes+ln( {e^{(-E_(a))/(8.314* 850)})=ln({e^{(-E_(a))/(8.314* 600)})\\-6.50+ -E_(a)/(8.314* 850)={(-E_(a))/(8.314* 600)\\E_(a)=110.243 kJ/mol]()