86.6k views
3 votes
Find the future values of these ordinary annuities. Compounding occurs once a year.

a.$400 per year for 10 years at 10%
b.$200 per year for 5 years at 5%
c.$400 per year for 5 years at 0%
d.Rework parts a, b, and c assuming they are annuities due.

1 Answer

5 votes

Answer:

a. $6,374.97

b. $1,105.13

c .$400

d. (a) $7,012.47, (b) $1,160.38 (c) $400

Step-by-step explanation:

P = C [((1+r)^n)-1)/r]

Where:

P = Future value of the annuity stream to be paid in the future

C = Value of each annuity payment

r = Interest rate

n = Number of periods over which payments are made

a. P = C [((1+r)^n)-1)/r]

C = $400

r = 10%

n = 10

P = 400 [((1 + 10%)^10) - 1) / 10%]

P = 400 [((1.1)^10) - 1) / 0.1]

P = 400 [(2.593742460 - 1) / 0.1]

P = 400 [(1.593742460) / 0.1]

P = 400 [(15.93742460]

P = 6,374.969840

P = $6,374.97

b. P = C [((1+r)^n)-1)/r]

C = $200

r = 5%

n = 5

P = 200 [((1 + 5%)^5) - 1) / 5%]

P = 200 [((1.05)^5) - 1) / 0.05]

P = 200 [(1.276281563 - 1) / 0.05]

P = 200 [(0.276281563) / 0.05]

P = 200 [(5.525631250]

P = 1,105.126250

P = $1,105.13

c. P = C [((1+r)^n)-1)/r]

C = $400

r = 0%

n = 5

P = 400 [((1 + 0%)^5) - 1) / 0%]

P = 400 [((1)^5) - 1) / 0]

P = 400 [(1 - 1) / 0]

P = 400 [(0) / 0]

P = 400 [Undefined]

P = 400

P = $400

d. (a) FV of Annuity Due = P = C [((1+r)^n)-1)/r] x (1+r)

C = $400

r = 10%

n = 10

P = C [((1+r)^n)-1)/r]

C = $400

r = 10%

n = 10

P = 400 [((1 + 10%)^10) - 1) / 10%] x (1+10%)

P = 400 [((1.1)^10) - 1) / 0.1] x (1+0.1)

P = 400 [(2.593742460 - 1) / 0.1] x (1.1)

P = 400 [(1.593742460) / 0.1] x (1.1)

P = 400 [(15.93742460] x (1.1)

P = 6,374.969840 x (1.1)

P = 7,012.466824

P = $7,012.47

d. (b). P = C [((1+r)^n)-1)/r] x (1+r)

C = $200

r = 5%

n = 5

P = 200 [((1 + 5%)^5) - 1) / 5%] x (1+5%)

P = 200 [((1.05)^5) - 1) / 0.05] x (1.05)

P = 200 [(1.276281563 - 1) / 0.05] x (1.05)

P = 200 [(0.276281563) / 0.05] x (1.05)

P = 200 [(5.525631250] x (1.05)

P = 1,105.126250 x (1.05)

P = $1,160.382563

P = $1,160.38

c. P = C [((1+r)^n)-1)/r] x (1+r)

C = $400

r = 0%

n = 5

P = 400 [((1 + 0%)^5) - 1) / 0%] x (1+0%)

P = 400 [((1)^5) - 1) / 0] x (1.0)

P = 400 [(1 - 1) / 0] x (1.0)

P = 400 [(0) / 0] x (1.0)

P = 400 [Undefined] x (1.0)

P = 400 x (1.0)

P = $400

User Benoit Esnard
by
5.4k points