Linear equation is p = (-0.004) n + 110
Explanation:
We have, p = price, n = no. of shirts , m = slope,
b = constant (y - intercept)
linear equation as ,
.....(1)
(p,n)= ($34, 19000) & ($14, 24000)
putting above values in equation (1) we get,
⇒ 34 = (19000×m) + b ⇒
.... (2)
and, 14 = (24000×m) + b ⇒
....(3)
Equating equations (2) & (3),
⇒

⇒

⇒ 19 (14 – b) = 24 (34 – b)
⇒

⇒

⇒

⇒

⇒

⇒ b = 110
Now,

putting values of m & b in equation (1) we get :
