Answer:
Part A :
![0.3770](https://img.qammunity.org/2021/formulas/mathematics/college/uvpcg96nzsc7ds85b159j25cz5plu1f2v1.png)
Part B :
![0.2065](https://img.qammunity.org/2021/formulas/mathematics/college/pflo1pdxku8yr2qo4c7wj3xbk8v8pe14ct.png)
Part C :
![0.0663](https://img.qammunity.org/2021/formulas/mathematics/college/k3gr9k5ihbezjbkiqux9opsgqg4gx56x7u.png)
Explanation:
Let's start defining the random variable.
If X : ''Time between arrivals of customers at a store'' is the exponential random variable, its probability distribution function will be :
![f(x)=g.e^(-gx)](https://img.qammunity.org/2021/formulas/mathematics/college/zbbdqqg5qagldsxd1avc79fs881yrzk130.png)
Where
λ is the parameter of the exponential distribution.
Also λ = 1 / μ where μ is the mean of the distribution.
Using the data of the exercise :
λ =
![(1)/(6.34)](https://img.qammunity.org/2021/formulas/mathematics/college/lxuc3pciamz6mj7594y7qa5solspd76pin.png)
The cumulative distribution function of the exponential random variable is :
![P(X\leq x)=F(x)=1-e^(-gx)](https://img.qammunity.org/2021/formulas/mathematics/college/qvg4pzjntddl9fzv1wrhd8xyuo0engpamf.png)
For this exercise :
(I)
We are going to use the equation (I) to calculate all the probabilities.
Part A :
![P(X<3)](https://img.qammunity.org/2021/formulas/mathematics/college/19qbhu2miwfk98r92erfhuq4ttmbwkcxja.png)
because the exponential distribution is a continuous random variable ⇒
≅
![0.3770](https://img.qammunity.org/2021/formulas/mathematics/college/uvpcg96nzsc7ds85b159j25cz5plu1f2v1.png)
Part B :
⇒
⇒
≅
![0.2065](https://img.qammunity.org/2021/formulas/mathematics/college/pflo1pdxku8yr2qo4c7wj3xbk8v8pe14ct.png)
Part C :
⇒
⇒
≅
![0.0663](https://img.qammunity.org/2021/formulas/mathematics/college/k3gr9k5ihbezjbkiqux9opsgqg4gx56x7u.png)