211k views
8 votes
What is the solution of the inequality 9 - x^2<0?

User Rookian
by
7.6k points

1 Answer

10 votes

Answer:


x < -3\quad \mathrm{or}\quad \:x > 3

Explanation:

Given:


9-x^2 < \:0

Solve:


\mathrm{Subtract\:}9\mathrm{\:from\:both\:sides}


9-x^2-9 < 0-9


\mathrm{Simplify}


-x^2 < -9


Multiply\:both\:sides\:by\:-1\:


\left(-x^2\right)\left(-1\right) > \left(-9\right)\left(-1\right)


\mathrm{Simplify}


x^2 > 9


\mathrm{For\:}u^n\: > \:a\mathrm{,\:if\:}n\:\mathrm{is\:even}\mathrm{\:then\:}u\: < \:-\sqrt[n]{a}\:or\:u\: > \:\sqrt[n]{a}


x < -√(9)\quad \mathrm{or}\quad \:x > √(9)


√(9)=3


x < -3\quad \mathrm{or}\quad \:x > 3

~lenvy~

User Ilya Novojilov
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories