Answer:
a. 0.8187
b. 0.0176
Step-by-step explanation:
Given
Expected error = 0.2
Number of pages = 10
Let X = a random variable that denotes the number of typographical error in a magazine.
Suppose that there are x words in a page.
And there are p probability of a typographical error
We have that X ~ Binom(x,p)
a.
x = 10
E(X) = mean = λ = 0.2
To solve this, we'll make use of Poisson approximation of a binomial variable
i.e.
X ~ Pois(0.2)
P(X=x) = (λ^x e^-λ)/x!
For P(X=2)
P(X=2) = (0.2^0 * e^-0.2)/0!
P(X=2) = (1 * e^-0.2)/1
P(X=2) = e^-0.2
P(X=2) = 0.818730753077981
P(X=2) = 0.8187 ---------- Approximated
b.
P(X>=2) = 1 - P(X<2)
P(X>=2) = 1 - P(X=0) - P(X=1)
P(X=0) = 0.8187
Solving P(X=1)
P(X=1) = 0.2^1 * e^-0.2/1!
P(X=1) = 0.2e^-0.2
P(X=1) = 0.163746150615596
P(X=1) = 0.1637 ----------Approximated
So, P(X>=2) = 1 - 0.8187 - 0.1637
P(X>=2) = 0.0176