185k views
4 votes
Using binomial theorem, expand (x+6)^8

edit: You could use the help of combinations too.

1 Answer

6 votes

x⁸ + 48x⁷ + 1008x⁶ + 12096x⁵ + 90720x⁴ + 435456x³ + 1306368x² + 2239488x + 1679616

Step-by-step explanation:

We know

(x+y)ⁿ = ∑ ⁿCₐxⁿ⁻ᵃyᵃ

and ⁿCₐ = n! / ( a! ) . ( n-a )!

So,

(x+6)⁸ = ⁸C₀x⁸ + ⁸C₁(x)⁸⁻¹(6)¹ + ⁸C₂(x)⁸⁻²(6)² + ⁸C₃(x)⁸⁻³(6)³ + .......+ ⁸C₈(x)⁸⁻⁸(6)⁸

= ₓ⁸ + 8x⁷ₓ 6 + 28x⁶ₓ 36 + 56x⁵ₓ 216 + 70x⁴ₓ 1296 + 56x³ₓ 7776 + 28x²ₓ 46656 + 8x . 279936 + 1679616

= x⁸ + 48x⁷ + 1008x⁶ + 12096x⁵ + 90720x⁴ + 435456x³ + 1306368x² + 2239488x + 1679616

Thus, the expansion of ( x+6)⁸ using binomial theorm is

x⁸ + 48x⁷ + 1008x⁶ + 12096x⁵ + 90720x⁴ + 435456x³ + 1306368x² + 2239488x + 1679616

User Harsh Kanakhara
by
9.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories