Answer:
z(max) = 5000
x = 100
y = 0
Explanation:
Let call
x floral arrangements and
y fruit baskets
Then Objective function is according to profits in each gift
z = 50*x + 35*y
Constraints:
1.- Hours available in Assembly department 40 in minutes is 2400 minutes
20*x + 15*y ≤ 2400
2.- Hours available in packaging department 10 in minutes is 600
6*x + 2*y ≤ 600
3.- x and y must be x ≥ 0 y ≥ 0
Then the system is:
z - 50*x - 50*y = 0 To maximize subject to:
20*x + 15*y ≤ 2400
6*x + 2*y ≤ 600
x ≥ 0 y ≥ 0
Simplex Method:
z x y s₁ s₂ Cte
1 -50 -35 0 0 = 0
0 20 15 1 0 = 2400
0 6 2 0 1 = 600
First iteration: 6 is a pivot we dvede R3 by 6
z x y s₁ s₂ Cte
1 0 15 0 50/6 = 5000
0 0 -50/6 -1 20/6 = -400
0 20 15 1 0 = 2400
0 1 2/6 0 1/6 = 100
We have done no negative number in the objective function we stop iteration and
z(max) = 5000
x = 100
y = 0
to add to R1 50*R3 [ 0 50 100/6 0 50/6 5000
to add to R2 20*R3 [ 0 20 40/6 0 20/6 2000