Answer:
The solution to the differential equation
y' = (7cos5x)/(8 - 3y); y(0) = 3
is
16y - 3y² = 70sin5x + 21
Explanation:
y' = (7cos5x)/(8 - 3y)
This can be written as
dy/dx = (7cos5x)/(8 - 3y)
Separate the variables
(8 - 3y)dy = (7cos5x)dx
Integrate both sides
8y - (3/2)y² = 35sin5x + C
Applying the initial condition y(0) = 3
8(3) - (3/2)(3)² = 35sin(5(0)) + C
24 - (27/2) = 0 + C
C = 21/2
Therefore,
8y - (3/2)y² = 35sin5x + 21/2
Or
16y - 3y² = 70sin5x + 21