189k views
1 vote
How is the Distributive Property used to simplify operations with scientific notation

User Gafar
by
5.2k points

1 Answer

2 votes

Answer:

See explanation

Explanation:

Let a,b, and c be real numbers.

The distributive property says that:


a(b + c) = ab + ac

Assuming we want to simplify:


10(5*10^(-1)+150*10^(-3))

We apply the distributive property to get:


10(5*10^(-1)+150*10^(-3)) = 5*10^(-1) * 10+150*10^(-3) * 10

We can now use rules of exponents to simplify further:


10(5*10^(-1)+150*10^(-3)) = 5*10^(-1) * 10^(1) +150*10^(-3) * 10^(1)


10(5*10^(-1)+150*10^(-3)) = 5*10^(-1 + 1) +150*10^(-3 + 1)


10(5*10^(-1)+150*10^(-3)) = 5*10^(0) +150*10^(-2)


10(5*10^(-1)+150*10^(-3)) = 5*1+1.50*10^(-2)x {10}^(2)


10(5*10^(-1)+150*10^(-3)) = 5*1+1.50*10^(-2 + 2)


10(5*10^(-1)+150*10^(-3)) = 5+1.50*10^(0) = 6.5 * {10}^(0)

User Kornel Kisielewicz
by
4.4k points