Answer:
or 2.62
Explanation:
Since our region (on the left) is bounded by x = 1 and x = 0 (where
, if we take center at x = 2 then our radius will range from 1 to 2 (x=1 to x = 0). We can use the following integration to calculate the volume using shell method
![V = \int\limits^2_1 {2\pi r h} \, dr](https://img.qammunity.org/2021/formulas/mathematics/college/7wlar81b50li6f8hiek0kgbnisci2xxph9.png)
where r = 2 - x so x = 2 - r and
for
![1 \leq r \leq 2](https://img.qammunity.org/2021/formulas/mathematics/college/fly172f0ff36gkjuqcl0031kjfk9itjy1w.png)
![V = \int\limits^2_1 {2\pi r(2-r)^2} \, dr](https://img.qammunity.org/2021/formulas/mathematics/college/cds7g6uaswyzuejmv9xd7q47x9enm8heg3.png)
![V = \int\limits^2_1 {2\pi r(4 - 4r + r^2)} \, dr](https://img.qammunity.org/2021/formulas/mathematics/college/ttx2e6i6c7nmwbknndb67q1v0mr0je8lfe.png)
![V = 2\pi \int\limits^2_1 {r^3 - 4r^2 +4r} \, dr](https://img.qammunity.org/2021/formulas/mathematics/college/bh5u4ygcbaz9cgyfj83a6i4mnkdsezxqs8.png)
![V = 2\pi\left[(r^4)/(4) - (4r^3)/(3) + 2r^2\right]^2_1](https://img.qammunity.org/2021/formulas/mathematics/college/zfqfzheviup8m7jg12zfnb45p1so1u855w.png)
![V = 2\pi\left[\left((2^4)/(4) - (4*2^3)/(3) + 2*2^2\right) - \left((1^4)/(4) - (4*1^3)/(3) + 2*1^2\right)\right]](https://img.qammunity.org/2021/formulas/mathematics/college/2i0ihjp63rmnqqbemuh84rq7zmj6zehd67.png)
![V = 2\pi(4 - 32/3 +8 - 1/4 + 4/3 - 2)](https://img.qammunity.org/2021/formulas/mathematics/college/i2g6cqpj0651aqhxwprxavg5qf8c74bdmn.png)
![V = \pi(20 - 56/3 - 1/2)](https://img.qammunity.org/2021/formulas/mathematics/college/6bmqvd5def9khuwxcskal1zqmj0bgxansa.png)
![V = \pi(120 - 112 - 3)/(6)](https://img.qammunity.org/2021/formulas/mathematics/college/dxlk1augjgtndva0d8ok3hmovfooz8h2ul.png)
or 2.62