Final answer:
To find the product of (7x + 3y)(8x + 5y), you can use the distributive property of multiplication. The equivalent expression is 56x^2 + 59xy + 15y^2.
Step-by-step explanation:
To find the product of (7x + 3y)(8x + 5y), you can use the distributive property of multiplication over addition.
This means that each term in the first expression is multiplied by each term in the second expression.
Here are the steps:
Apply the distributive property to multiply 7x by each term in the second expression: 7x * 8x + 7x * 5y
Apply the distributive property to multiply 3y by each term in the second expression: 3y * 8x + 3y * 5y
Simplify each term: 56x^2 + 35xy + 24xy + 15y^2
Combine like terms: 56x^2 + 59xy + 15y^2
Therefore, the expression (7x + 3y)(8x + 5y) is equivalent to 56x^2 + 59xy + 15y^2.